
1/3

March 24, 2020

Accessing a member of a Windows Runtime class raises
an Invalid Cast Exception / throws a hresult_no_interface,
what does this mean?

devblogs.microsoft.com/oldnewthing/20200324-00

Raymond Chen

You’re minding your own business and you decide to call a method on some object.

Everything compiles fine, but it crashes at runtime with Invalid Cast Exception :

// C#
var options = new LauncherOptions();
options.IgnoreAppUriHandlers = true; // System.InvalidCastException

// C++/WinRT
LauncherOptions options;
options.IgnoreAppUriHandlers(true); // winrt::hresult_no_interface

// C++/CX
auto options = ref new LauncherOptions();
options->IgnoreAppUriHandlers = true; // Platform::InvalidCastException

Why am I getting an “invalid cast exception” when there is no casting going on at all?

The clue is in the C++/WinRT example, which throws

winrt:: hresult_ no_ interface .

Under the covers, Windows Runtime objects are COM objects, and their members are

methods on COM interfaces. When you use a member, what happens behind the scenes is

that the language projection queries the object for the COM interface that implements the

desired member, and then it calls the corresponding interface method.

One of the rules of COM is that interfaces are immutable. Therefore, in order to add new

members to the object, those new members need to be put on a new interface.

For example, the members of the Launcher Options runtime class were introduced as

follows:

https://devblogs.microsoft.com/oldnewthing/20200324-00/?p=103586

2/3

Windows 8
 ILauncher Options

Treat As Untrusted

Display Application Picker

UI

Preferred Application Package Family Name

Preferred Application Display Name

Fallback Uri

Content Type

Windows 10 version 1507
 ILauncher Options2

Target Application Package Family Name

Neighboring Files Query

Windows 10 version 1607
 ILauncher Options3

Ignore App Uri Handlers

Internally, a Windows Runtime object is represented by its “default interface”. Deciding upon

a default interface is usually a no-brainer, because a freshly-introduced object typically

implements only one interface anyway.¹ For example, in Windows 8, the only interface

supported by Launcher Options is ILauncher Options , which makes ILauncher ‐

Options the default interface, seeing as you have no choice.

Using one of the Windows 8 properties goes like this:

// C#: options.TreatAsUntrusted = true;
// C++/CX: options->TreatAsUntrusted = true;
// C++/WinRT: options.TreatAsUntrusted(true);

// options is already a ILauncherOptions.
options->put_TreatAsUntrusted(true);

But using one of the properties added later takes a little more work:

// C#: options.IgnoreAppUriHandlers = true;
// C++/CX: options->IgnoreAppUriHandlers = true;
// C++/WinRT: options.IgnoreAppUriHandlers(true);

ILauncherOptions3* options3;
options->QueryInterface(IID_PPV_ARGS(&options3));
options3->put_IgnoreAppUriHandlers(true);
options3->Release();

If you take a program that uses Ignore App Uri Handlers and run it on on a version of

Windows that doesn’t support the property, the Query Interface call fails with E_ NO ‐

INTERFACE . The language projection then converts this into a language-specific exception.

C# converts it to a System.Invalid Cast Exception.

C++/CX converts it to a Platform.Invalid Cast Exception.

C++/WinRT converts it to a winrt.hresult_no_interface.

C# and C++/CX report this as an Invalid Cast Exception , because the common case for

this is where you try to cast an object to an interface that it doesn’t support.

https://docs.microsoft.com/en-us/dotnet/api/system.invalidcastexception?view=netframework-4.8
https://docs.microsoft.com/en-us/cpp/cppcx/platform-comexception-class?view=vs-2019
https://github.com/microsoft/cppwinrt/blob/61b62611484dc7dede489ee4d7dcc4306e924cc7/strings/base_error.h#L326

3/3

Instead of adding new interfaces, you might be tempted to add new members to the existing

interface, in violation of COM rules. But that would result in profound sadness if a program

tried to use one of those new members when running on a system that doesn’t support it:

// C#: options.IgnoreAppUriHandlers = true;
// C++/CX: options->IgnoreAppUriHandlers = true;
// C++/WinRT: options.IgnoreAppUriHandlers(true);
//
// In hypothetical world where new members
// are added to ILauncherOptions.

options->put_IgnoreAppUriHandlers(true);

Since there is no put_ Ignore App Uri Handlers method in the vtable on older versions of

Windows, this results not only in reading past the end of the vtable, but taking the undefined

value past the end of the vtable and treating it as a function pointer! If you’re lucky, this

crashes unrecoverably. If you’re unlucky, this is a security vulnerability.

Now that we understand the source of the invalid cast exception, we can look next time at

what we can do about it.

¹ The default interface may not be IUnknown or IInspectable .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

