
1/2

April 8, 2020

Creating a non-agile delegate in C++/WinRT, part 3: The
other cases and why they aren’t interesting

devblogs.microsoft.com/oldnewthing/20200408-00

Raymond Chen

We’ve been looking at one specific case of a non-agile delegate, namely a delegate that is

invoked on a background thread and wants to execute synchronously on a UI thread. What

about the other cases?

Yeah, what about them? Let’s write out a table.

Handled on

Raised on

Background thread UI thread

Background thread Already there Makes no sense

UI thread resume_ synchronous Already there

Other UI thread resume_ synchronous

Two of the boxes are labeled Already there. Those are the cases where the event is raised in

the same apartment that you want to handle it, in which case everything is fine and there’s no

need to play any apartment-switching games.

Two of the boxes are labeled resume_ synchronous . In these cases, you want to run the

handler synchronously on a UI thread which is not the one your handler was invoked in. In

those cases, you can use the resume_ synchronous function we discussed last time. Of

course, since you are running on a UI thread, you shouldn’t perform long blocking

operations. This is particularly true if you’re in the bottom right corner, because you are

holding two UI threads hostage while your event handler is running.

That leaves the last box, labeled Makes no sense.

That box makes no sense.

https://devblogs.microsoft.com/oldnewthing/20200408-00/?p=103657

2/2

That box represents the case where the event is raised on a UI thread, but you want to handle

it synchronously on a background thread. Why would you do that?

The usual reason for moving to a background thread is to allow you to perform long-running

operations without affecting the responsiveness of the UI thread. But that doesn’t help us

here, because this table is about running the code synchronously in another apartment, so

the UI thread is going to remain unresponsive while the background thread does its work.

Switching to the background thread didn’t accomplish anything. You may as well just do it on

the UI thread.

Remember that this entire discussion is in the context of running the handler synchronously.

If you can run the handler asynchronously, perhaps with the assistance of a deferral, then

you should just do that.

We’ll wrap up this discussion next time by connecting this discussion to C++/WinRT in a

different way.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

