
1/2

April 17, 2020

What will be placed in the output parameter if the
function fails?

devblogs.microsoft.com/oldnewthing/20200417-00

Raymond Chen

A customer wanted to know what, if anything, can be said about the value in the output

parameter of the Open Process Token function if the call fails.

According to the ground rules, the contents of output parameters are unspecified on failure.

There is a special rule for COM which says that the contents of output parameters on failure

must be valid values for their type. For example, if the output parameter is a COM interface

pointer, then it must contain a valid value for a COM interface pointer on return, even if the

call failed.¹

However, as a concession to the widespread use of RAII types, the de facto rule is that if the

output parameter is a resource that requires management (disposal, release, etc.), then the

value on failure is either unchanged or set to a “no resource” value.

If you use an RAII type, then you are going to pass an empty² RAII object to the function

because the function may put a valid object into the RAII object, and you don’t want to leak

the old object. Therefore, if the function that fails leaves the RAII object empty or explicitly

sets it to empty, the RAII object can be destructed without harm. On the other hand, if the

function put garbage in the output parameter, then the RAII type is going to try to clean up a

garbage resource, which is unlikely to end well.

In other words, for types that require cleanup, “empty stays empty” on failure. (On the other

hand, if the original object was not empty, it’s not specified whether the result is empty or

not.)

Now, if the output doesn’t require resource management, then this rule doesn’t apply. For

example, if the output is a string buffer, the buffer could very well be filled with garbage on

failure. You need to free the buffer, and a buffer of garbage can be freed just as easily as a

buffer with a valid string in it.

Examples:

BOOL GetSomething(HSOMETHING* result);

https://devblogs.microsoft.com/oldnewthing/20200417-00/?p=103679
https://devblogs.microsoft.com/oldnewthing/20060320-13/?p=31853
https://en.cppreference.com/w/cpp/language/raii

2/2

Does the HSOMETHING need to be destroyed in a special way? If so, then on failure, Get ‐

Something will either leave the *result unchanged, or set it to nullptr . If you are using

an RAII type to hold the HSOMETHING , then you will have arranged for *result to contain

nullptr before calling Get Something , which means that on failure, *result will still

be nullptr .

HRESULT GetWidgetName(HWIDGET widget, wchar_t buffer[], size_t size);

Since wchar_t does not require any special resource management, the buffer could be

filled with garbage if Get Widget Name fails.

HRESULT GetWidgetName(HWIDGET widget, PWSTR* name);

This case is different. Let’s say that the name needs to be freed with a function like Co Task ‐

Mem Free . In that case, the function cannot set *name to a garbage pointer, because that

would cause Co Task Mem Free to crash. On failure, *name will be unchanged or set to

nullptr .

Bonus chatter: WIL has a number of helper functions for manipulating tokens.

¹ For COM interface pointers, the value is typically nullptr on failure. Exceptions are

called out in the function documentation if the result is anything else. For example, a

function might return E_PENDING and put a provisional answer in the output pointer, with a

complete answer provided when the operation completes.

² The word empty is a term of art which refers to the case where an object of an RAII type is

not managing anything.

Raymond Chen

Follow

https://github.com/microsoft/wil/blob/master/include/wil/token_helpers.h
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

