
1/7

May 14, 2020

Inside std::function, part 2: Storage optimization
devblogs.microsoft.com/oldnewthing/20200514-00

Raymond Chen

Last time, we looked at the basic idea behind std::function . For each callable type, it

creates a custom callable wrapper class that knows how to invoke the instance of that

type. Each callable derives from a common base interface, and the main

std::function holds a pointer to that interface.

As I noted, the standard requires that if the callable is a plain function pointer or a

reference_wrapper , then no additional allocations are permitted.

The way the optimization works is that the function also carries with it a small buffer of

raw bytes. If the callable is small (as it will be for a function pointer or or a

reference_wrapper), then the callable is stored directly in the buffer, avoiding an

extra allocation. If the callable is large, then a separate allocation is done as before.¹

The concept behind the optimization is simple, but the execution is rather complicated. Since

the memory is now being partly managed by the class itself, we can’t use a unique_ptr any

more. Instead, we keep a raw pointer and do manual memory management.

Let’s start with what we need in our function :

inline constexpr size_t storage_size =
 std::max(sizeof(callable<void(*)()>),
 sizeof(reference_wrapper<char>));

using storage_t = typename
 aligned_storage<storage_size>::type;

struct function
{
 callable_base* m_callable = nullptr;

 storage_t m_storage;

 void* storage() { return addressof(m_storage); }

 ...
};

https://devblogs.microsoft.com/oldnewthing/20200514-00/?p=103749
https://devblogs.microsoft.com/oldnewthing/20200513-00/?p=103745

2/7

In addition to the callable_base pointer, we also have some storage that we can use for

small callables. In order to satisfy the standard, our storage needs to be large enough to hold

a callable function pointer or a callable reference wrapper.

There’s a bit of a trick here: Calculating the size of an arbitrary function pointer and an

arbitrary reference wrapper. Fortunately, the standard requires that all function pointers

have the same size,² due to the rule that says that you can reinterpret_cast among

function pointers, and if you reinterpret_cast back to where you started, the result is the

same. A reference_wrapper is a wrapper around a pointer, and the largest pointer is the

void* , which the standard requires to be the same size as a char* .³

The idea is that the m_callable points either to a heap-allocated callable<T> (if it is

large) or to a callable<T> constructed via placement new into the m_storage (if it is

small).

It’s a simple idea, but the implementation gets kind of messy, because the callable<T> ‘s

clone method has to do different things depending on whether it is a large or small object.

struct function
{
 ...

 template<typename T>
 function(T&& t)
 {
 if constexpr (sizeof(*new callable(t)) <= storage_size) {
 m_callable = new(storage()) callable(t);
 } else {
 m_callable = new callable(t);
 }
 }

 ...
};

To create a function , we take the functor object and construct it either in-place (if it is

small) or on the heap (if it is large).

3/7

struct function
{
 ...

 function(const function& other)
 {
 if (other.m_callable) {
 m_callable = other.m_callable.clone(m_storage);
 }
 }

 ...
};

To copy a function , we take the source’s m_callable and ask it to clone itself, using our

storage if it can.

struct function
{
 ...

 function(function&& other)
 {
 if (other.m_callable == other.storage()) {
 m_callable = other.m_callable.move_to(m_storage);
 exchange(other.m_callable, nullptr)->~callable();
 } else if (other.m_callable) {
 m_callable = exchange(other.m_callable, nullptr);
 }
 }

 ...
};

To move a function , there are three cases.

If the callable is small (the m_callable points to its storage), then move it into the

destination’s storage and destruct the original, leaving the source empty.

If the callable is large (the m_callable is non-null but does not point to its storage),

then transfer the pointer into the new object and leave the source empty.

If there is no callable (m_callable is nullptr), then leave both source and

destination empty.

The order of operations in the move_to case is tricky. The move_to comes first, because

we don’t want to make any changes to the source if the operation fails. Once the move

succeeds, we need to null out the other.m_callable before destructing it, so that an

exception during destruction will not result in double-destruction later.

4/7

struct function
{
 ...

 ~function()
 {
 if (m_callable == storage()) {
 m_callable->~callable();
 } else {
 delete m_callable;
 }
 }

 ...
};

To destruct a function , there are again three cases, but two of them collapse.

If the callable is small (the m_callable points to our storage), then destruct it in

place.

Otherwise the callable is large or null. We take advantage of the fact that delete -ing a

null pointer is harmless.

The operator()(int, char*) is the same as before.

We need to make some adjustments to callable_base :

struct callable_base
{
 callable_base() = default;
 virtual ~callable_base() { }
 virtual bool invoke(int, char*) = 0;
 virtual callable_base* clone(storage_t& storage) = 0;
 virtual callable_base* move_to(storage_t& storage) = 0;
};

The callable_base has new clone and move_to methods.

5/7

template<typename T>
struct callable : callable_base
{
 T m_t;

 callable(T const& t) : m_t(t) {}
 callable(T&& t) : m_t(move(t)) {}

 bool invoke(int a, char* b) override
 {
 return m_t(a, b);
 }

 ...
};

The constructors and invoke method haven’t changed.

template<typename T>
struct callable : callable_base
{
 ...

 callable_base* clone(storage_t& storage) override
 {
 if constexpr (sizeof(*this) <= sizeof(storage)) {
 return new(addressof(storage)) callable(m_t);
 } else {
 return new callable(m_t);
 }
 }

 callable_base* move_to(storage_t& storage) override
 {
 if constexpr (sizeof(*this) <= sizeof(storage)) {
 return new(addressof(storage)) callable(move(m_t));
 } else {
 return nullptr; // should not be called
 }
 }
};

The clone and move_to methods use the provided storage if it is large enough.

Otherwise, the clone allocates the cloned object on the heap. (On the other hand

move_to should never be called for heap-allocated objects, for in those cases, we move the

pointer to the callable instead of the callable itself.)

I think that’s the necessary changes to keep track of the memory bookkeeping for our

miniature function . I left out a bunch of methods that are required by the standard,

particularly the assignment operators. I’m not even going to leave them as an exercise,

6/7

because you should just be using the std::function implementation that came with your

compiler.

The purpose of this entry was to give you an idea of what’s happening under the hood. This

will help you when you need to debug one of these things, and the techniques may come in

handy later. Like next time, for instance. Stay tuned.

¹ Implementations typically do some tuning to decide how big this small buffer should be.

You want the buffer to be small, so that the function object consumes less memory. But you

want the buffer to be large enough to hold the most common callables. (Plus, of course, the

two callables required by the standard.)

² Note that the same requirement does not apply to pointers to member functions.

³ Technically, I guess, you could have an implementation where function pointers were

different sizes, but where reinterpret_cast applies appropriate conversions to “squeeze

out the air” from large function pointers so they can be recovered from small function

pointers;⁴ or an implementation where reference_ wrapper did something weird based

on the type. But since std::function is part of the implementation, it can make these

sorts of implementation-dependent assumptions.

⁴ For example, you might have “fast function pointers” which are fat (say, because they

consist of a code pointer plus a table of contents) and “slow function pointers” which are

smaller but slower (consisting of just the code pointer). The idea is that the bytes

immediately before the code pointer hold the table of contents. Calling through a fast

function pointer consists of loading the table of contents into the global pointer register, and

calling the code pointer.

 ; assume fast function pointer is in r34/r35
 mov gp, r34 // set up global pointer
 mov b6, r35 // set up branch target
 br.call.dptk.many rp = b6 ;; // call it

Calling through a slow function pointer requires the call site to recover the table of contents

from memory before calling the target.

 ; assume slow function pointer is in r34
 add r30 = r34, -8 // get address of TOC
 mov b6, r34 ;; // set up branch target
 mov gp, [r30] // set up global pointer
 br.call.dptk.many rp = b6 ;; // call the target

The slow version costs a memory access and takes an extra cycle. It may also burn an extra

cache line, because we have to access the data that comes before the start of the code, and the

code may have to satisfy certain alignment requirements which cause it tend to appear at the

start of a cache line.

https://devblogs.microsoft.com/oldnewthing/20040209-00/?p=40713

7/7

To convert a fast function pointer to a slow one, discard the table of contents pointer. To

convert a slow function pointer to a fast one, fetch the table of contents pointer from the

memory immediately before the code address.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

