
1/3

June 10, 2020

Determining approximately how much stack space is
available, part 2

devblogs.microsoft.com/oldnewthing/20200610-00

Raymond Chen

Last time, we used the _alloca function as a sneaky way to probe whether there was

sufficient stack space available. However, it had a number of downsides, as previously

discussed.

Another way to determine whether there is sufficient stack space is to calculate it yourself.

The Get Current Thread Stack Limits returns the current stack bounds. You can compare

the results against the current stack pointer to see how much room is left.

__declspec(noinline)
bool is_stack_available(size_t amount)
{
 ULONG_PTR low, high;
 GetCurrentThreadStackLimits(&low, &high);
 auto remaining = reinterpret_cast<ULONG_PTR>(&low) - low;
 if (remaining > high - low) {
 __fastfail(FAST_FAIL_INCORRECT_STACK);
 }
 return remaining >= amount;
}

This function obtains the current stack pointer by taking the address of a local variable. This

is only an approximation, because the compiler could choose to put the local variable in

unused parameter home space or in the red zone, but those locations are close to the stack

pointer, so it’s basically good enough.

The distance from the current stack pointer to the bottom of the stack is the total remaining

stack space. This assumes that the stack grows downward, but that’s true of every Win32

processor, so we’re okay there, for now.¹

As a sanity check, we validate that the calculated value for remaining stack is reasonable. If

the stack pointer were discovered to be below the low limit or above the high limit, then we

fail fast declaring that the stack is corrupt. (We can do this with a single comparison thanks

to the required wrapping behavior of unsigned arithmetic.)

https://devblogs.microsoft.com/oldnewthing/20200610-00/?p=103855
https://devblogs.microsoft.com/oldnewthing/20200609-00/?p=103847
https://devblogs.microsoft.com/oldnewthing/20190111-00/?p=100685

2/3

Note that this mechanism differs from the _alloca technique in a few ways. One is that it

does not commit any of the pages in the remaining stack; it merely reports how much is

possible without forcing it to become realized. This is a good thing, because it means that you

don’t end up pre-paying for something you may not actually need.

Another difference is that that it does not take the thread stack guarantee into account. The

thread stack guarantee sets the point at which the system raises a stack overflow exception.

The memory reserved by the guarantee is therefore not available for general use. Therefore,

this version will over-report available stack. We can take the guarantee into account with a

little more tweaking:

__declspec(noinline)
bool is_stack_available(size_t amount)
{
 ULONG_PTR low, high;
 GetCurrentThreadStackLimits(&low, &high);
 auto remaining = reinterpret_cast<ULONG_PTR>(&low) - low;
 if (remaining > high - low) {
 __failfast(FAST_FAIL_INCORRECT_STACK);
 }
 ULONG guarantee = 0;
 SetThreadStackGuarantee(&guarantee);
 return remaining >= amount + guarantee;
}

We call Set Thread Stack Guarantee with a guarantee of zero to query the current

guarantee. We then report whether the remaining size is enough to cover the requested size

plus the guarantee.

The noinline attribute is important for a subtle reason: Without it, you may find false

positive fail-fast exceptions. Can you figure out why?

The answer is coroutines.

If the function is inlined into a coroutine, then the “stack” variables are more likely to be

stored in the coroutine frame on the heap. Compiler optimizations may be able to figure out

that a local variable’s lifetime does not cross a suspension point, so it can be moved to the

stack, but that is at the compiler’s discretion and not guaranteed. Marking the function as

noinline prevents it from being inlined into a coroutine.²

¹ Pour one out for the poor Itanium.

² Our previous version with _alloca also had this problem if inlined into a coroutine. In

that case, we are saved because _alloca is disallowed in a coroutine, so the opportunity

never arises.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

