
1/3

July 2, 2020

Cancelling a Windows Runtime asynchronous operation,
part 2: C++/CX with PPL, explicit continuation style

devblogs.microsoft.com/oldnewthing/20200702-00

Raymond Chen

We began our investigation of Windows Runtime cancellation with how task cancellation is

projected in C#. But how about C++/CX with PPL and explicit continuations?

Okay, let’s do this.

auto picker = ref new FileOpenPicker();
picker->FileTypeFilter.Append(L".txt");

cancellation_token_source cts;
auto do_cancel = std::make_shared<call<bool>>([cts](bool) { cts.cancel(); });
auto delayed_cancel = std::make_shared<timer<bool>>(3000U, false, do_cancel.get());
delayed_cancel->start();

create_task(picker->PickSingleFileAsync()).
 then([do_cancel, delayed_cancel](task<StorageFile^> precedingTask)
 {
 StorageFile^ file;
 try {
 file = precedingTask.get();
 } catch (task_canceled const&) {
 file = nullptr;
 }

 if (file != nullptr) {
 DoSomething(file);
 }
 });

Setting up the timer to cancel the task is quite annoying. Both call objects and timer

objects are non-copyable, but we need to keep both of the objects alive for the duration of the

asynchronous operation, so we need to copy them into the lambda so that they will not be

destructed prematurely. But then you run into that whole “non-copyable” business.

Your next thought would be to initialize the objects directly into the lambda:

https://devblogs.microsoft.com/oldnewthing/20200702-00/?p=103923
https://devblogs.microsoft.com/oldnewthing/20200701-00/?p=103916

2/3

 then([do_cancel = call<bool>(...),
 delayed_cancel = timer<bool>(...)]
 (task<StorageFile^> precedingTask)

But that too doesn’t work because the lambda is copied around internally by PPL, so we once

again run into the “non-copyable” problem.

We address the problem by putting both the call and the timer in a shared_ptr . The

shared_ptr is copyable, and when the last one destructs, call and timer are

destroyed.

Okay, that was a long and annoying aside.

When the underlying Windows Runtime asynchronous operation completes, PPL propagates

the status into the task. You can see this happen in ppltasks.h . (I’ve simplified the code a

bit for expository purposes.)

_AsyncOp->Completed = ref new AsyncOperationCompletedHandler<_ReturnType>(
 [_OuterTask](auto^ _Operation, AsyncStatus _Status) mutable
{
 if (_Status == AsyncStatus::Canceled)
 {
 _OuterTask->_Cancel(true);
 }
 else if (_Status == AsyncStatus::Error)
 {
 _OuterTask->_CancelWithException(
 std::make_exception_ptr(::ReCreateException(_Operation-
>ErrorCode.Value)));
 }
 else
 {
 _ASSERTE(_Status == AsyncStatus::Completed);

 try
 {
 _OuterTask->_FinalizeAndRunContinuations(_Operation->GetResults());
 }
 catch (...)
 {
 // unknown exceptions thrown from GetResult
 _OuterTask->_CancelWithException(std::current_exception());
 }
}

When the operation completes, PPL looks at the status code. If the status code says that the

operation was canceled, then it cancels the wrapper task. If it says that the operation

encountered an error, then it synthesizes an exception object from the error code and puts it

in the wrapper task. Otherwise, the operation succeeded, so we get the results from the

3/3

operation (_Operation->GetResults()) and set that as the result of the wrapper task.

(There’s an extra wrinkle: If GetResults itself throws an exception, then the wrapper task

is set into an error state with that exception.)

Okay, so that’s how the cancellation gets into the wrapper task. How does it come out?

PPL throws a task_canceled object when you try to get the results of a canceled task. This

is documented under task.get(), and you can see it happen in ppltask.h :

_ReturnType get() const
{
 if (!_M_Impl)
 {
 details::_DefaultTaskHelper::_NoCallOnDefaultTask_ErrorImpl();
 }

 if (_M_Impl->_Wait() == canceled)
 {
 _THROW(task_canceled{});
 }

 return _M_Impl->_GetResult();
}

Next time, we’ll look at PPL with coroutines.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/cpp/parallel/concrt/reference/task-class?view=vs-2019#get
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

