
1/2

July 3, 2020

Cancelling a Windows Runtime asynchronous operation,
part 3: C++/CX with PPL, coroutine style

devblogs.microsoft.com/oldnewthing/20200703-00

Raymond Chen

Last time, we looked at how task cancellation is projected in C++/CX with PPL and explicit

continuations. But how about C++/CX with PPL and coroutines?

auto picker = ref new FileOpenPicker();
picker->FileTypeFilter.Append(L".txt");

cancellation_token_source cts;
call<bool> do_cancel([cts](bool) { cts.cancel(); });
timer<bool> delayed_cancel(3000U, false, &do_cancel);
delayed_cancel.start();

StorageFile^ file;
try {
 file = co_await create_task(picker->PickSingleFileAsync(), cts.get_token());
} catch (task_canceled const&) {
 file = nullptr;
}

if (file != nullptr) {
 DoSomething(file);
}

Notice that coroutines save us a lot of the hassle of setting up the call and timer because

the objects live in the coroutine frame, which continues to exist until the coroutine

completes.

Again, the task throws a task_canceled upon cancellation. This time, it’s because of the

await_resume for the task awaiter, which you can find in pplawait.h :

https://devblogs.microsoft.com/oldnewthing/20200703-00/?p=103952
https://devblogs.microsoft.com/oldnewthing/20200702-00/?p=103923

2/2

template <typename _Ty>
struct _Ppltask_awaiter {
 ...

 decltype(auto) await_resume() {
 return _Task.get();
 }
};

But wait, the PPL library also supports awaiting on raw IAsyncAction^ and

IAsyncOperation^ objects. Next time, we’ll look at what happens in that case.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

