What does the /ALTERNATENAME linker switch do?

=. devblogs.microsoft.com/oldnewthing/20200731-00

July 31, 2020

)
Raymond Chen

There’s an undocumented switch for the Microsoft Visual Studio linker known as
/ALTERNATENAME . Despite being undocumented, people use it a lot. So what is it?

This is effectively a command line switch version of the OLDNAMES. LIB library. When you say
/ALTERNATENAME : X=Y , then this tells the linker that if it is looking for a symbol named X
and can’t find it, then before giving up, it should redirect it to the symbol Y and try again.

The C runtime library uses this mechanism for various sneaky purposes. For example, there’s
a part that goes

BOOL (WINAPI * const _pbDefaultRawDllMain)(HANDLE, DWORD, LPVOID) = NULL;

#if defined (_M_IX86)

#pragma comment(linker, "/alternatename:__pRawDllMain=__pDefaultRawDl1lMain")
#elif defined (_M_IA64) || defined (_M_AMD64)

#pragma comment(linker, "/alternatename:_pRawDllMain=_pDefaultRawDllMain")
#else /* defined (_M_IA64) || defined (_M_AMD64) */

#error Unsupported platform

#endif /* defined (_M_IA64) || defined (_M_AMD64) */

What this does is say, “If you need a symbol called pRawD11Main , but you can’t find it,
then try again with _pDefaultRawD11Main .” If an object file defines _pRawD11Main , then
that definition will be used. Otherwise _pbDefaultRawDl1lMain will be used.

Note that /ALTERNATENAME is a linker feature and consequently operates on decorated
names, since the linker doesn’t understand compiler-specific name-decoration algorithms.
This means that you typically have to use different versions of the /ALTERNATENAME switch,
depending on what architecture you are targeting. In the above example, the C runtime
library knows that _ cdecl decoration prepends an underscore on x86, but not on any
other platform.

This use of /ALTERNATENAME here is a way for the compiler to generate hooks into the DLL
startup process based on the code being compiled. If there isno _pRawD11Main defined by
an object file, then _pDefaultRawDl1lMain will be used instead, and that version is just a
null pointer, which means, “Don’t do anything special.”

1/3

https://devblogs.microsoft.com/oldnewthing/20200731-00/?p=104024
https://devblogs.microsoft.com/oldnewthing/20200730-00/?p=104021
https://devblogs.microsoft.com/oldnewthing/20150727-00/?p=90821

This pattern of using the /ALTERNATENAME switch lets you provide a default value for a
function or variable, which others can override if they choose. For example, you might do
something like this:

void default_error_log() { /* do nothing */ }
// For expository simplification: assume x86 cdecl
#pragma comment(linker, "/alternatename:_error_log=_default_error_log")

If nobody defines a custom error_log function, then all references to error_log are
redirected to default error_log , and the default error log function does nothing.!

The C++/WinRT library uses /ALTERNATENAME for a different purpose. The C++/WinRT
library wants to support being used both with and without windows.h , so it contains its
own declarations for the Windows functions and structures that it needs.

But now there’s a problem: If it is used with windows.h , then there are structure definition
errors. Therefore, C++/WinRT needs to give its equivalent declarations of Windows
structures some other name, to avoid redefinition errors.

But this in turn means that the function prototypes in the C++/WinRT library need to use the

renamed structures, rather than the original Windows structures, in case the C++/WinRT

library is used without windows.h . This declaration will in turn create a conflict if the

C++/WinRT library is used with windows.h when the real declarations are encountered in
windows.h .

The solution is to rename the C++/WinRT version of Windows functions, too. C++/WinRT
gives them a WINRT IMPL_ prefix, so that there is no function declaration collision.

We now have two parallel universes. There’s the windows.h universe, and the C++/WinRT
universe, each with their own structures and functions. The two parallel universes are unified
by the /ALTERNATENAME directive, which tells the linker, “If you find yourself looking for the
function WINRT_IMPL_GetlLastError ,tryagainwith GetLastError .” Since nobody
defines WINRT IMPL GetLastError ,the “try again” kicks in, and all of the calls to

WINRT GetLastError end up redirected to the operating system GetlLastError function,
which is what we wanted in the first place.

1 The more traditional way of doing this (that doesn’t rely on undocumented vendor-specific

linker features) is to take advantage of the classical model for linking, specifically the part
where you can let an OBJ override a LIB: What you do is define _pRawD11Main in a
separate OBJ file that defines nothing except that one variable, and put that OBJ in the C
runtime LIB. If the module provides its own definition of _pRawD11Main in an OBJ file,
then that definition is used. Otherwise, the linker will search through the LIBs, and
eventually it will find the one in the C runtime LIB and use that one.

2/3

https://devblogs.microsoft.com/oldnewthing/20130107-00/?p=5633
https://devblogs.microsoft.com/oldnewthing/20130109-00/?p=5613

So why does /ALTERNATENAME exist if you could already get this effect via LIBs, and in way
that all linkers support, not just the Microsoft C linker?

C++/WinRT is a header-only library. It has no LIB in which to put these default definitions.
It therefore has to use the “command line switch version of a LIB”.

Raymond Chen

Follow

3/3

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

