
1/3

July 31, 2020

What does the /ALTERNATENAME linker switch do?
devblogs.microsoft.com/oldnewthing/20200731-00

Raymond Chen

There’s an undocumented switch for the Microsoft Visual Studio linker known as

/ALTERNATENAME . Despite being undocumented, people use it a lot. So what is it?

This is effectively a command line switch version of the OLDNAMES.LIB library. When you say

/ALTERNATENAME:X=Y , then this tells the linker that if it is looking for a symbol named X

and can’t find it, then before giving up, it should redirect it to the symbol Y and try again.

The C runtime library uses this mechanism for various sneaky purposes. For example, there’s

a part that goes

BOOL (WINAPI * const _pDefaultRawDllMain)(HANDLE, DWORD, LPVOID) = NULL;

#if defined (_M_IX86)

#pragma comment(linker, "/alternatename:__pRawDllMain=__pDefaultRawDllMain")

#elif defined (_M_IA64) || defined (_M_AMD64)

#pragma comment(linker, "/alternatename:_pRawDllMain=_pDefaultRawDllMain")

#else /* defined (_M_IA64) || defined (_M_AMD64) */

#error Unsupported platform

#endif /* defined (_M_IA64) || defined (_M_AMD64) */

What this does is say, “If you need a symbol called _pRawDllMain , but you can’t find it,

then try again with _pDefaultRawDllMain .” If an object file defines _pRawDllMain , then

that definition will be used. Otherwise _pDefaultRawDllMain will be used.

Note that /ALTERNATENAME is a linker feature and consequently operates on decorated

names, since the linker doesn’t understand compiler-specific name-decoration algorithms.

This means that you typically have to use different versions of the /ALTERNATENAME switch,

depending on what architecture you are targeting. In the above example, the C runtime

library knows that __cdecl decoration prepends an underscore on x86, but not on any

other platform.

This use of /ALTERNATENAME here is a way for the compiler to generate hooks into the DLL

startup process based on the code being compiled. If there is no _pRawDllMain defined by

an object file, then _pDefaultRawDllMain will be used instead, and that version is just a

null pointer, which means, “Don’t do anything special.”

https://devblogs.microsoft.com/oldnewthing/20200731-00/?p=104024
https://devblogs.microsoft.com/oldnewthing/20200730-00/?p=104021
https://devblogs.microsoft.com/oldnewthing/20150727-00/?p=90821

2/3

This pattern of using the /ALTERNATENAME switch lets you provide a default value for a

function or variable, which others can override if they choose. For example, you might do

something like this:

void default_error_log() { /* do nothing */ }

// For expository simplification: assume x86 cdecl

#pragma comment(linker, "/alternatename:_error_log=_default_error_log")

If nobody defines a custom error_log function, then all references to error_log are

redirected to default_error_log , and the default error log function does nothing.¹

The C++/WinRT library uses /ALTERNATENAME for a different purpose. The C++/WinRT

library wants to support being used both with and without windows.h , so it contains its

own declarations for the Windows functions and structures that it needs.

But now there’s a problem: If it is used with windows.h , then there are structure definition

errors. Therefore, C++/WinRT needs to give its equivalent declarations of Windows

structures some other name, to avoid redefinition errors.

But this in turn means that the function prototypes in the C++/WinRT library need to use the

renamed structures, rather than the original Windows structures, in case the C++/WinRT

library is used without windows.h . This declaration will in turn create a conflict if the

C++/WinRT library is used with windows.h when the real declarations are encountered in

windows.h .

The solution is to rename the C++/WinRT version of Windows functions, too. C++/WinRT

gives them a WINRT_IMPL_ prefix, so that there is no function declaration collision.

We now have two parallel universes. There’s the windows.h universe, and the C++/WinRT

universe, each with their own structures and functions. The two parallel universes are unified

by the /ALTERNATENAME directive, which tells the linker, “If you find yourself looking for the

function WINRT_IMPL_GetLastError , try again with GetLastError .” Since nobody

defines WINRT_IMPL_GetLastError , the “try again” kicks in, and all of the calls to

WINRT_GetLastError end up redirected to the operating system GetLastError function,

which is what we wanted in the first place.

¹ The more traditional way of doing this (that doesn’t rely on undocumented vendor-specific

linker features) is to take advantage of the classical model for linking, specifically the part

where you can let an OBJ override a LIB: What you do is define _pRawDllMain in a

separate OBJ file that defines nothing except that one variable, and put that OBJ in the C

runtime LIB. If the module provides its own definition of _pRawDllMain in an OBJ file,

then that definition is used. Otherwise, the linker will search through the LIBs, and

eventually it will find the one in the C runtime LIB and use that one.

https://devblogs.microsoft.com/oldnewthing/20130107-00/?p=5633
https://devblogs.microsoft.com/oldnewthing/20130109-00/?p=5613

3/3

So why does /ALTERNATENAME exist if you could already get this effect via LIBs, and in way

that all linkers support, not just the Microsoft C linker?

C++/WinRT is a header-only library. It has no LIB in which to put these default definitions.

It therefore has to use the “command line switch version of a LIB”.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

