
1/2

August 19, 2020

On using FILE_FLAG_WRITE_THROUGH and
FILE_FLAG_NO_BUFFERING for memory-mapped files

devblogs.microsoft.com/oldnewthing/20200819-00

Raymond Chen

A customer wanted to use the FILE_ FLAG_ WRITE_ THROUGH and

FILE_ FLAG_ NO_ BUFFERING flags for a memory-mapped file, based on this guidance in

the documentation for Create File :

For this reason, the FILE_FLAG_WRITE_THROUGH flag is often used with the
FILE_FLAG_NO_BUFFERING flag as a replacement for calling the FlushFileBuffers
function after each write, which can cause unnecessary performance penalties. Using these flags
together avoids those penalties.

The customer was concerned whether this combination of flags will affect data consistency.

Actually, the customer’s problems with data consistency started even before they got around

to worrying about these flags.

Since they are using a memory-mapped file, they don’t have any direct control over when the

memory gets written to disk. Page from memory-mapped files are written to disk at the

operating system’s discretion. Therefore, if they write information into two pages of a

memory-mapped file, the pages can be written to disk in any order.

Since they’re asking about data consistency, they must be worried about power loss or system

crashes before the data can be written to disk. And since the pages can be written in either

order, all four outcomes of two dirty pages are possible.

Page 1 written to disk Page 2 written to disk

No No

Yes No

No Yes

Yes Yes

https://devblogs.microsoft.com/oldnewthing/20200819-00/?p=104093

2/2

So much for data consistency.

Setting those flags on a memory-mapped file controls how the operating system writes the

memory to disk, but it doesn’t provide any control over when the memory is written to disk.

And without that control, you don’t really have data consistency.

Usually, when designing a system for consistency, you have a specific order in which data

needs to be written to the disk. For example, you might decide to write the new data to the

disk, and then once that’s safe, you write new metadata (say, by updating an index) that

causes the new data to become the active values, and the old data to be ignored. Those are the

writes that would be able to take advantage of the write-through and buffering flags.

Bonus chatter: Using FILE_FLAG_NO_BUFFERING with a memory-mapped file doesn’t

really serve any purpose. The “no buffering” flag means that the writes go straight to the disk

without being cached in memory. But the whole point of a memory-mapped file is to be

cached in memory!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

