
1/3

November 26, 2020

Disk and File I/O performance with ETW traces: Why is
System doing so much stuff?

devblogs.microsoft.com/oldnewthing/20201126-00

Raymond Chen

Last time, I shared some preliminary notes on analyzing Disk and File I/O performance with

ETW traces. Here are some notes on the mysterious System file. (These notes also apply to

Process Monitor.)

What is this System process, and why is it doing a ton of I/O?

The System process represents work done in the kernel by drivers, not associated with any

particular process. There are a few common reasons for activity in System.

One is I/O issued by drivers, such as anti-malware. You can identify at least some of those

anti-malware-initiated I/O by looking for I/O issued to the anti-malware’s databases or

executables.

Another is delayed writes from the disk cache. When an application writes to a file, you’ll see

a File I/O logged for the application’s write operation, but that one usually completes into the

disk cache. Dirty data in the disk cache is lazily written back to the drive, and that work gets

charged to the System.

There’s also a counterpart to lazy-writing, and that’s prefetching. If the system detects

sequential I/O, it will issue a speculative read-ahead from the file into the disk cache. These

speculative reads are charged to System as well.

This work done by System means that a raw tally of file I/O activity may double-count some

of the I/O.

Consider an application that reads from a 64KB file as a series of sixteen 4KB reads. If you

look at the File I/O operations for that file, you may see the following:

Line # Process I/O Type Offset Size

1 contoso.exe Read 0 4,096

https://devblogs.microsoft.com/oldnewthing/20201126-00/?p=104488
https://devblogs.microsoft.com/oldnewthing/20201125-00/?p=104480

2/3

2 contoso.exe Read 4,096 4,096

3 System Read 4,096 61,440

4 contoso.exe Read 8,192 4,096

5 contoso.exe Read 12,288 4,096

6 contoso.exe Read 16,384 4,096

⋮ ⋮ ⋮ ⋮ ⋮

17 contoso.exe Read 61,440 4,096

Total 126,976

Let’s walk through what happened.

At line 1, the application issued a 4KB read to read the start of the file. This read went

through normally.

At line 2, the application issued a 4KB read to read the next part of the file. The system

realized that the application appears to be doing a sequential read, so it initiated its own

60KB read from the file in anticipation of further reads coming soon. That system-initiated

read was logged as line 3.

The reads from lines 2 and 3 were coalesced at the disk layer, and a single 60KB read was

issued to the disk (not shown here). The data went into the disk cache, and the first 4KB of

the data was also returned to the application.

For rotational media, once you pay for the cost of seeking the disk head to the right spot, the

additional cost of a 60KB read over a 4KB read is negligible. You may as well get the extra

56KB while you’re already there, since getting there was the hard part.

At line 4, the application issued another 4KB read. The system’s speculation paid off, and the

read was satisfied from the disk cache.

The same thing happens for lines 5 through 17. These reads were successfully speculated by

the system, and they were all satisfied from the disk cache.

This is great: Read-ahead speculation and the disk cache made the application run much

faster. But if all you look at is the Totals, it looks like we read 124KB of data from the disk:

64KB issued by the application, and another 60KB mysteriously issued by System. You might

wonder “Why is System coming in and issuing all this I/O? Can’t the system just leave me

alone?”

But now you know: System was issuing all this I/O in order to make your I/O run faster.

3/3

Bonus chatter: There’s another category of prefetch which occurs at application launch.

The system traces the I/O operations performed by an application when it starts up, and it

uses this historical information the next time the application starts up to decide which data to

request from the hard drive before allowing the application to start. This serves two

purposes: First of all, it gets the data ready before the application requests it. What’s more,

since it’s a bulk request, the disk system can reorder the I/O operations to be more efficient.

For example, if an application typically reads a file at offset 0, then offset 327,680, and then

offset 4096, the prefetch will issue all the requests at once, and the disk I/O system will

probably combine the reads at offset 0 and 4096 together.

Bonus bonus chatter: Yet another category of prefetch comes from Superfetch. One of the

things that Superfetch does is predict that certain pieces of data are going to be used and use

low-priority I/O to get that data into memory ahead of time.

Bonus bonus bonus chatter: If you have a very fast SSD, the system realizes this and

turns off Superfetch, ReadyBoot, and the defragmenter.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

