
1/3

December 3, 2020

Additional notes on the various patterns for passing C-
style arrays across the Windows Runtime boundary

devblogs.microsoft.com/oldnewthing/20201203-00

Raymond Chen

Some time ago, I wrote about the various patterns for passing C-style arrays across the

Windows Runtime boundary. A customer had some questions about that table: Who owns

the data? Is it passed by value or by copy? Who is responsible for freeing the data?

Let’s look at that table again, but in little pieces:

 PassArray FillArray

Allocated by Caller Caller

Size Caller decides Caller decides

Policy Read-only Write-only

IDL
void M(T[] value); void M(

 ref T[] value);

ABI

HRESULT M(
 UINT32 size,

 _In_reads_(size)
 T* value);

HRESULT M(
 UINT32 size,

 _Out_writes_all_(
 size) T* value);

In the case of PassArray and FillArray, the memory is allocated by the caller, and a pointer to

it is passed to the callee. This a non-owning pointer. The callee can use the pointer for the

duration of the function, but not after the function returns. The caller retains ownership of

the data, and therefore the caller retains responsibility for freeing the data in whatever

manner it sees fit.

If you think about it, there’s no choice in the matter for FillArray, since the caller still needs

to be able to access the data after the function returns. In theory, you could use ownership

transfer semantics for PassArray, but that would just be a pessimization: Why introduce

extra copies into a scenario that doesn’t need to? Besides, ownership transfer semantics for

inbound parameters does not mix with smart pointers.

https://devblogs.microsoft.com/oldnewthing/20201203-00/?p=104507
https://devblogs.microsoft.com/oldnewthing/20200205-00/?p=103398
https://devblogs.microsoft.com/oldnewthing/20151023-00/?p=91291

2/3

At the ABI level, the array is passed by reference, since it’s a pointer and a length. Of course,

if the calling language’s semantics are that arrays are passed by value, then for PassArray, the

language projection will probably make a copy of the array and pass a reference to the copy.

But that’s the projection’s decision, not the ABI’s.

The other two columns are for ReceiveArray:

ReceiveArray

Parameter Return value

Allocated by Callee Callee

Size Callee decides Callee decides

Policy Write-only Write-only

IDL
void M(

 out T[] value);
T[] M();

ABI

HRESULT M(
 Out UINT32* size,
 _Outptr_result_buffer_all_(

 *size) T** value);

For ReceiveArray, the result is allocated by the callee. If you think about it, there’s no choice

in the matter, because only the callee knows the size of the result.

The memory is then passed back to the caller, who assumes responsibility for the memory. If

you think about it, there’s no choice in the matter here either, because the callee has no

opportunity to free the memory after it returns. The memory must be freed with Co Task ‐

Mem Free , which is the standard allocator for COM methods.

I didn’t bother calling out these details because they are direct consequences of COM

memory rules. Memory that is allocated by one component and freed by another component

must use the COM task allocator: Co Task Mem Alloc / Co Task Mem Free . If the allocating

and freeing all happens on the same side of the function boundary, then that side of the

boundary controls the lifetime.

To make things a bit more complete, I retroactively went back and added two more rows to

the table:

 PassArray FillArray

ReceiveArray

Parameter Return value

3/3

Allocated by Caller Caller Callee Callee

Size Caller decides Caller decides Callee decides Callee decides

Freed by Caller Caller Caller Caller

Allocator Caller decides Caller decides COM allocator COM allocator

Policy Read-only Write-only Write-only Write-only

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

