
1/4

December 10, 2020

Parsing ETL traces yourself, part 2: The EventLogReader
devblogs.microsoft.com/oldnewthing/20201210-00

Raymond Chen

The CLR System.Diagnostics.Eventing.Reader namespace contains classes for

parsing classic ETL events. You create an EventLogReader object, giving it the path to the

ETL file, and then call ReadEvent to extract the next event from the event log.

Here’s a simple program that parses an event log looking for start and stop events from a

specific provider and event ID, and calculating the net time:

https://devblogs.microsoft.com/oldnewthing/20201210-00/?p=104536

2/4

using System;

using System.Diagnostics.Eventing.Reader;

class Program

{

 static readonly Guid MyProviderId = new Guid("...");

 const int beginId = 3141;

 const int endId = 3142;

 static public void Main(string[] args)

 {

 var filename = args[0];

 using (var log = new EventLogReader(filename, PathType.FilePath)) {

 string currentScenario = string.Empty;

 DateTime beginTime = DateTime.MinValue;

 TimeSpan totalDuration = TimeSpan.Zero;

 EventLogRecord data;

 while ((data = (EventLogRecord)log.ReadEvent()) != null) {

 if (data.ProviderId == MyProviderId) {

 if (data.Id == beginId) {

 if (beginTime != DateTime.MinValue) {

 throw new Exception("Overlapping events not supported");

 }

 currentScenario = (string)data.Properties[0].Value;

 beginTime = data.TimeCreated.Value;

 }

 else if (data.Id == endId) {

 if (beginTime != DateTime.MinValue) {

 if (currentScenario != (string)data.Properties[0].Value) {

 throw new Exception("Unsupported event sequence");

 }

 var duration = data.TimeCreated.Value - beginTime;

 System.Console.WriteLine($"{currentScenario},{duration}");

 totalDuration += duration;

 beginTime = DateTime.MinValue;

 }

 }

 }

 }

 System.Console.WriteLine($"Total,{totalDuration}");

 }

 }

}

We start by opening an EventLogReader on our event log file. The EventLogReader can

connect to an active event log, but we’re using it here for offline analysis.

The currentScenario variable remembers the name of the current scenario being tracked.

3/4

The beginTime variable remembers when the current begin/end pair began. It is

MinValue if nothing is being tracked.

The totalDuration variable accumulates the total time consumed by our begin/end pairs

so far.

We pull events from the event log by calling ReadEvent . We check if the event was

generated by our provider. We could have checked the ProviderName property, but I’m

going for ProviderId because it avoid case-sensitivity questions, ensures uniqueness in the

face of somebody else coincidentally choosing the same name, and appeals to me because I

like to think comparing two Guid objects is faster than comparing two strings.

Once we verify that the event belongs to our provider, we check the event IDs. If it’s our

begin event, then we remember the event timestamp and the scenario name, which is a string

provided as the first (and only) event payload.

There are methods and properties on the EventLogRecord that let you learn about the type

of payload attached to the event, but I’m just hard-coding specific knowledge of the way my

provider generates the events. This is common when doing event processing. After all, you

generated the event. You should know what’s in it.

I add a little defensive check that there are not two begin events in a row. This is a hole in my

processing: If there are two begin events in a row, then they should both be tracked, and the

corresponding end events should be matched up against the begin events. This is a quick-

and-dirty program, so I just complain if overlapping events are discovered, so I know that I

need to go back and add support for that.¹

If we get an end event, we check if there is active sequence, and if so, verify that the end event

matches the begin.¹ Assuming everything passes, we print the elapsed time for that

sequence, and accumulate it for final reporting.

Note that we do not complain if we see an end event without a begin. This can happen if the

trace began while a sequence was already in progress.

When all the events are done, we print the cumulative time.

The EventLogReader is a wrapper around the native functions in the winevt.h header

file, like EvtOpenSession and EvtNext . It’s handy, but only if you are interested in class

for reading classic manifested events. It doesn’t understand the ad-hoc events generated by

TraceLogging. The native header file for decoding TraceLogging events is tdh.h , but the

EventLogReader doesn’t use it.

Oh no, what are we going to do?

Relief arrives next time.

https://docs.microsoft.com/windows/win32/tracelogging/trace-logging-portal

4/4

¹ It’s important to check for these cases, even if you don’t support them, because you may

encounter a trace that includes overlapping events, and if you didn’t check for that case, the

program would generate incorrect results and cause you to draw the wrong conclusions. Bad

data is worse than no data.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

