
1/2

December 17, 2020

On the ways of finding a dispatcher for the current thread
in the Windows Runtime

devblogs.microsoft.com/oldnewthing/20201217-00

Raymond Chen

If you’re working with XAML in the Windows Runtime, there’s a good chance that you are

going to have to deal with dispatchers. A dispatcher is an object that manages a queue of

work items and runs (dispatches) them in some order, usually to a dedicated thread. For

UWP XAML apps, the dispatcher is a CoreDispatcher . There’s also a different dispatcher

known as a DispatcherQueue which is used by Direct3D and Composition.

If you’re writing general-use code, you may want to obtain the dispatcher for the current

thread, so you can dispatch work back to thread later.

To obtain the DispatcherQueue for the current thread, you can call the Dispatcher‐

Queue.GetForCurrentThread static method. It returns null if the current thread is not

controlled by a DispatcherQueue .

Getting the CoreDispatcher is trickier, since there is no obvious way to get one. You’ll

have to get it indirectly.

One way is to ask the misleadingly-named CoreApplication.GetCurrentView static

method for the CoreApplicationView that belongs to the current thread, and then retrieve

the CoreApplicationView.Dispatcher property.

I say that the GetCurrentView method is misleadingly named because the sense of

“current” is not “currently on the screen” or “currently has focus”, but rather “belonging to

the current thread”. The word current refers to the thread context, not to the view. It’s

confusing because the word thread appears nowhere in the method name!

There’s a practical downside of the GetCurrentView method: If the current thread does not

have an associated CoreApplicationView , the method fails, which gets turned by the

languages projection into an exception. You have to catch the exception, which is not only

annoying, but it’s also distracting, because debuggers often break whenever an exception is

https://devblogs.microsoft.com/oldnewthing/20201217-00/?p=104556

2/2

thrown (even if the exception is ultimately caught). Developers using your library have to

disable “break on exception”, which may conflict with their preferred settings, especially if

the developer is trying to track down the source of an exception that is causing problems.

Even if everybody agrees not to break on exceptions, you still get debug spew about the

exception that was thrown and subsequently caught. If a developer is trying to chase down a

problem, and they see some debug spew about an exception, they may begin to suspect that

your library is somehow the cause of their problem, even though it has nothing to do with

their problem.

Fortunately, there’s an alternative: You can use the static CoreWindow.GetForCurrent‐

Thread method, which attempts to find the CoreWindow for the current thread, and then

retrieve the CoreWindow.Dispatcher property. This gives you the same dispatcher that

you would have gotten from the CoreApplicationView , but the advantage here is that

CoreWindow.GetForCurrentThread returns null if the current thread doesn’t have a

CoreWindow , rather than throwing an exception.

If you want to sniff around for a dispatcher, you can do this:

if (auto dispatcherQueue = DispatcherQueue.GetForCurrentThread()) {

 ... do something with the dispatcherQueue ...

} else if (auto window = CoreWindow.GetForCurrentThread()) {

 ... do something with window.Dispatcher() ...

} else {

 ... deal with the fact that there is no dispatcher ...

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

