
1/4

December 25, 2020

How can I emulate the
REG_NOTIFY_THREAD_AGNOSTIC flag on systems that
don’t support it? part 5

devblogs.microsoft.com/oldnewthing/20201225-00

Raymond Chen

We complete our somewhat pointless exercise of emulating the REG_NOTIFY_THREAD_

AGNOSTIC flag by making our coroutine resilient to failure partway through. This requires you

to accept the anachronism of using C++20 coroutines, while also dropping Windows XP

support, since we will be relying on thread pool features new to Windows Vista.

https://devblogs.microsoft.com/oldnewthing/20201225-00/?p=104602
https://devblogs.microsoft.com/oldnewthing/20201224-00/?p=104599

2/4

auto RegNotifyChangeKeyValueAsync(
 HKEY hkey,
 BOOL bWatchSubtree,
 DWORD dwNotifyFilter,
 HANDLE hEvent)
{
 struct awaiter
 {
 awaiter(awaiter const&) = delete;
 void operator=awaiter(awaiter const&) = delete;

 HKEY m_hkey;
 BOOL m_bWatchSubtree;
 DWORD m_dwNotifyFilter;
 HANDLE m_hEvent;
 LONG m_result;
 PTP_WORK m_completionWork = nullptr;
 std::experimental::coroutine_handle<> m_handle;

 ~awaiter()
 {
 if (m_completionWork) CloseThreadpoolWork(m_completionWork);
 }

 bool await_ready() const noexcept { return false; }

 bool await_suspend(std::experimental::coroutine_handle<> handle)
 {
 m_completionWork = CreateThreadpoolWork(Complete, this, nullptr);
 if (!m_completionWork) {
 m_result = static_cast<LONG>(GetLastError());
 return false;
 }

 m_handle = handle;

 if (!QueueUserWorkItem(
 Register,
 this,
 WT_EXECUTEINPERSISTENTTHREAD)) {
 m_result = static_cast<LONG>(GetLastError());
 return false;
 }

 return true;
 }

 LONG await_ready() const noexcept { return m_result; }

 DWORD CALLBACK Register(void* param)
 {
 auto self = reinterpret_cast<awaiter*>(param);

3/4

 self->m_result = RegNotifyChangeKeyValue(
 self->m_hkey,
 self->m_bWatchSubtree,
 self->m_dwNotifyFilter,
 self->m_hEvent,
 TRUE);
 SubmitThreadpoolWork(m_completionWork);
 return 0;
 }

 DWORD CALLBACK Complete(void* param)
 {
 auto self = reinterpret_cast<awaiter*>(param);
 self->m_handle();
 return 0;
 }
 };

 return awaiter(hkey, bWatchSubtree, dwNotifyFilter, hEvent);
}

The idea here is that we have two work items. The first (for which we use Queue User Work ‐

Item) is scheduled onto a persistent thread. When that first work item runs (Register),

we register the notification and save the result. And then we submit the second work item,

which brings us to a normal thread pool thread, which is where we resume the caller by

invoking its coroutine handle.

As before, if anything goes wrong during the set-up, we save the error and declare that the

caller shouldn’t suspend. That way, it picks up the error immediately.

There’s a subtlety here: You might be tempted to clean up the completion work item as soon

as Submit Threadpool Work returns, but that would be wrong. There is a race condition

where the submitted work runs to completion before Submit Threadpool Work returns. In

that case, the coroutine has already resumed, and the awaiter has already destructed. The

subsequent call to Close Threadpool Work(m_completionWork); is accessing an object

after it has been destroyed.

Bonus chatter: Commenter Paul Jackson observed that the thread which executes WT_

EXECUTE IN PERSISTENT THREAD work items can exit if there are no pending I/O requests. Is

RegNotifyChangeKeyValue a pending I/O request? I’m not sure. So maybe WT_EXECUTE IN ‐

PERSISTENT THREAD doesn’t solve the problem after all. Fortunately, this was all a pointless

exercise.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20201223-00/?p=104584#comment-137566
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

