
1/2

January 11, 2021

How did I find the old Windows binaries and compilers
for the processor retrospective series?

devblogs.microsoft.com/oldnewthing/20210111-00

Raymond Chen

Friend of the blog Malcolm Smith asked me how I find the raw materials for the the various

processor retrospective series. “Do you keep copies of the old RISC compilers? Do you use

gcc? I don’t think the Microsoft compilers were cross compilers, so how do you get the

hardware to run these obsolete versions of Windows? And where do you get a debugger?”

Inside Microsoft, we have a server that keeps old copies of Microsoft software. It doesn’t have

everything, but it has a lot.

I start by downloading the processor documentation from the manufacturer and reading

through the entire instruction set. That teaches me about the processor architecture in

general. The next step is seeing how Windows uses it.

That part usually starts with digging out the Windows NT installation CD for the relevant

architecture and extracting the NOTEPAD.EXE program. I choose Notepad because it’s

relatively small, or at least it was relatively small at the time. Furthermore, I have an old copy

of the source code, which makes the reverse-compiling easier. The source code I have doesn’t

always perfectly match the build of Windows that the CD was created from, but it’s usually

close enough.

I send the binary through ODA, the online disassembler. I start doing reverse-compilation of

the resulting assembly. Good footholds are imported functions that are called in only one

place, like Drag Accept Files .

I don’t reverse-compile the entire binary, just enough to get a feel for the compiler’s code

generation and how various common coding patterns end up compiled. I make sure to look

for functions like Create Window ExW which have lots of parameters, so I can see more

details of the calling convention. I look for interlocked operations to see how atomic

operations work. And I look for lightweight leaf functions and functions with large local

variables to see how those are treated.

https://devblogs.microsoft.com/oldnewthing/20210111-00/?p=104699
https://devblogs.microsoft.com/oldnewthing/20190618-00/?p=102597
https://devblogs.microsoft.com/oldnewthing/20200616-00/?p=103869
https://onlinedisassembler.com/odaweb/

2/2

It’s during this phase that I discover things like the horrible code generation penalty for byte-

packed structures.

I look at the old Windows kernel source code to reverse-engineer details like the register

preservation rules and the size and placement of the red zone. Sometimes I also have to dig

in to find out how atomic operations are emulated.

If I need to get a sense for how things looked in the Windows debugger, I extract the

disassembler from the debugger source code and recompile it, and then ask it to disassemble

some bytes from the binary. This also lets me see which, if any, pseudo-instructions are

supported by the Windows disassembler.

Sometimes I get lucky and I can find a cross-compiler: If the processor was supported by

Windows Compact Edition, I can go to the Windows CE SDK and extract the compiler. This

lets me fill in gaps that aren’t answered by the existing code in Notepad, and it lets me verify

my understanding by writing test functions that exercise the rules I’ve reverse-engineered.

And then after I gather all the information, I start writing the articles. I try to make the

number of articles a multiple of five, since that lets it occupy an integral number of weeks.

What processor is coming next? I’m not sure. I think I’ve run out of all the easily-accessible

processors that Windows once supported but no longer does. I may have to start looking at

processors that are still supported.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290
https://devblogs.microsoft.com/oldnewthing/20190819-00/?p=102790
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

