
1/7

January 14, 2021

How can I write a C++ class that iterates over its base
classes?

devblogs.microsoft.com/oldnewthing/20210114-00

Raymond Chen

Suppose you have a class with multiple base classes, and you want to invoke a method on all

of the base classes.

For example, say we have Pillow and Radio classes:

class Pillow
{
public:
 int price();
 int weight();
 void refurbish(int level);
};

class Radio
{
public:
 int price();
 int weight();
 void refurbish(int level);
};

And you want to create a PillowRadio , which is a combination pillow and radio. It is

basically a pillow and a radio glued together. Okay, this is kind of ridiculous because there is

no such thing as a pillow-radio,¹ but let’s go along with it.

We would like the PillowRadio class to go something like this, assuming there were some way

to iterate over the base classes, for which I have made up some hypothetical syntax.

https://devblogs.microsoft.com/oldnewthing/20210114-00/?p=104714

2/7

class PillowRadio : public Pillow, public Radio
{
public:
 int price()
 {
 int total = 0;
 for (typename T : base_classes_of(this)) {
 total += T::price();
 }
 return total + 10; /* extra 10 for packaging */
 }

 int weight()
 {
 int total = 0;
 for (typename T : base_classes_of(this)) {
 total += T::weight();
 }
 return total + 5; /* extra 5 for packaging */
 }

 void refurbish(int level)
 {
 for (typename T : base_classes_of(this)) {
 T::refurbish(level);
 }
 }
};

The point is that you may have cases where you want to iterate over your base classes and

aggregate the results.

So how do you do this?

C++ doesn’t provide this degree of reflection but you can simulate it by introducing a helper

class.

3/7

template<typename... bases>
struct Aggregator : bases...
{
 int price()
 {
 return (0 + ... + bases::price());
 }

 int weight()
 {
 return (0 + ... + bases::weight());
 }

 void refurbish(int level)
 {
 (bases::refurbish(level), ...);
 }
};

class PillowRadio : Aggregator<Pillow, Radio>
{
public:
 int price()
 {
 return Aggregator::price() + 10; /* extra 10 for packaging */
 }

 int weight()
 {
 return Aggregator::weight() + 5; /* extra 5 for packaging */
 }

 /* inherit refurbish from Aggregator */
};

How does this work?

The Aggregator class is given a list of base classes, and it dutifully derives from them. So

that solves the first problem: Deriving from an Aggregator causes you to derive from all of

the specified base classes.

The methods on Aggregator use fold expressions which iterate over the template type

parameters and combine the results in some way.

For the case of refurbish , we don’t actually have any results to combine; we just want to

invoke refurbish on each base class, so we use the comma operator to throw the results

away after invoking each method. Fortunately, refurbish returns void , so we don’t have

to worry about somebody doing a sneaky overload of the comma operator.

https://en.cppreference.com/w/cpp/language/fold
https://devblogs.microsoft.com/oldnewthing/20200904-00/?p=104172

4/7

Of course, this Aggregator is tightly coupled to the methods of its base classes. Maybe we

can generalize it.

template<typename... bases>
struct Aggregator : bases...
{
 template<typename Visitor>
 void for_each_base(Visitor&& visitor)
 {
 (void(visitor(static_cast<bases&>(*this))), ...);
 }
};

The for_each_base method takes a visitor functor and calls it once for each base class. We

cast the result to void so that we can safely use the comma fold operator to throw the

results away after each call of the visitor.

Now we can implement the aggregator methods for our PillowRadio class.

class PillowRadio : Aggregator<Pillow, Radio>
{
public:
 int price()
 {
 int total = 10; /* extra 10 for packaging */
 for_each_base([&](auto&& base) { total += base.price(); });
 return total;
 }

 int weight()
 {
 int total = 5; /* extra 5 for packaging */
 for_each_base([&](auto&& base) { total += base.weight(); });
 return total;
 }

 void refurbish(int level)
 {
 for_each_base([&](auto&& base) { base.refurbish(level); });
 }
};

Okay, but what about static members?

Since function parameters cannot be types, we have to encode the type in the parameter

somehow, say by passing a suitably-cast null pointer.

https://devblogs.microsoft.com/oldnewthing/20200904-00/?p=104172

5/7

template<typename... bases>
struct Aggregator : bases...
{
 template<typename Visitor>
 void for_each_base(Visitor&& visitor)
 {
 (void(visitor(static_cast<bases&>(*this))), ...);
 }

 template<typename Visitor>
 static void static_for_each_base(Visitor&& visitor)
 {
 (void(visitor(static_cast<bases*>(nullptr))), ...);
 }
};

This time, the lambda gets a null pointer of the appropriate type. You can then access static

members via that strongly-typed null pointer.

class Pillow
{
public:
 static int list_price();
};

class Radio
{
public:
 static int list_price();
};

class PillowRadio : Aggregator<Pillow, Radio>
{
public:
 static int list_price()
 {
 int total = 10; /* extra 10 for packaging */
 static_for_each_base([&](auto* base) {
 using Base = std::decay_t<decltype(*base)>;
 total += Base::list_price();
 });
 return total;
 }
};

Even though the visitor is given a pointer, that pointer is always null. It is useful only for its

type information, not for its value.

It is somewhat unclear whether it is permissible to access static members via a strongly-typed

null pointer, so this alternative seems somewhat risky:

https://stackoverflow.com/questions/28482809/c-access-static-members-using-null-pointer

6/7

 // dereferencing null pointer to access static member - unclear legality
 static_for_each_base([&](auto* base) { total += base->list_price(); });

C++20 adds the ability to name the deduced template types of a lambda, so this becomes

slightly less awkward:

 static_for_each_base([&]<typename Base>(Base*) { total += Base::list_price();
});

You might want the static and nonstatic versions of for_each_base to agree on the type of

the parameter passed to the visitor, in which case you can have the nonstatic version also

pass a pointer:

template<typename... bases>
struct Aggregator : bases...
{
 template<typename Visitor>
 void for_each_base(Visitor&& visitor)
 {
 (void(visitor(static_cast<bases*>(this))), ...);
 }

 template<typename Visitor>
 static void static_for_each_base(Visitor&& visitor)
 {
 (void(visitor(static_cast<bases*>(nullptr))), ...);
 }
};

class PillowRadio : Aggregator<Pillow, Radio>
{
public:
 int price()
 {
 int total = 10; /* extra 10 for packaging */
 for_each_base([&](auto* base) { total += base->price(); });
 return total;
 }

 static int list_price()
 {
 int total = 10; /* extra 10 for packaging */
 static_for_each_base([&](auto* base) {
 using Base = std::decay_t<decltype(*base)>;
 total += Base::list_price();
 });
 return total;
 }
};

7/7

This aligns the two versions, but it may also make it easier to mistakenly move code from the

non-static version to static version without realizing that the meaning of the pointer has

changed. I’ll let you decide which is better.

A final consolidation could be merging the instance and static versions by taking an explicit

starting point for the aggregator, either null or non-null.

template<typename... bases>
struct Aggregator : bases...
{
 template<typename Visitor>
 static void for_each_base(Aggregator* self, Visitor&& visitor)
 {
 (void(visitor(static_cast<bases*>(self))), ...);
 }
};

class PillowRadio : Aggregator<Pillow, Radio>
{
public:
 int price()
 {
 int total = 10; /* extra 10 for packaging */
 for_each_base(this, [&](auto* base) { total += base->price(); });
 return total;
 }

 static int list_price()
 {
 int total = 10; /* extra 10 for packaging */
 // C++20: [&]<typename Base>(Base*) {
 for_each_base(nullptr, [&](auto* base) {
 using Base = std::decay_t<decltype(*base)>;
 total += Base::list_price();
 });
 return total;
 }
};

¹ Though fans of a Swedish children’s television show from 2004 may remember an episode

that involved such a contraption, with the obvious name kudderadio. (Sorry, I couldn’t find a

link to the kudderadio episode.)

Raymond Chen

Follow

https://www.youtube.com/watch?v=nmCUXNQlWto
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

