
1/2

January 15, 2021

The perils of the accidental C++ conversion constructor
devblogs.microsoft.com/oldnewthing/20210115-00

Raymond Chen

Consider this class:

class Buffer
{
public:
 Buffer(size_t capacity);
 Buffer(std::initializer_list<int> values);
};

You can create an uninitialized buffer with a particular capacity, or you can create an

initialized buffer.

The one-parameter constructor also serves as a conversion constructor, resulting in the

following:

Buffer buffer(24); // create a buffer of size 24
Buffer buffer({ 1, 3, 5 }); // create an initialized 3-byte buffer

Okay, those don’t look too bad. But you also get this:

Buffer buffer = 24; // um...
Buffer buffer = { 1, 3, 5 };

These are equivalent to the first two versions, but you have to admit that the = 24 version

looks really weird.

You also get this:

extern void Send(Buffer const& b);
Send('c'); // um...

This totally compiles, but it doesn’t send the character 'c' , which is what it looks like.

Instead, it creates an uninitialized buffer of size 0x63 = 99 and sends it.

If this is not what you intended, then you would be well-served to use the explicit

keyword to prevent a constructor from being used as conversion constructions.

https://devblogs.microsoft.com/oldnewthing/20210115-00/?p=104719

2/2

class Buffer
{
public:
 explicit Buffer(size_t capacity);
 Buffer(std::initializer_list<int> values);
};

I made the first constructor explicit, since I don’t want you to pass an integer where a buffer

is expected. However, I left the initializer list as a valid conversion constructor because it

seems reasonable to let someone write

Send({ 1, 2, 3 });

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

