
1/3

February 12, 2021

The COM static store, part 5: Using COM weak references
devblogs.microsoft.com/oldnewthing/20210212-00

Raymond Chen

Last time, we looked at aggregating a bunch of things into a single object so you can access

them all at once. That improves the efficiency of accessing objects in the COM static store,

but you can do even better.

Use a COM weak reference.

The COM weak reference lets you access the object in the COM static store without having to

actually dig through the COM static store to find it. It’s basically a shortcut:

COM static store

… → …

… → …

"SharedState" → SharedState ← WeakReference

Instead of having to dig through the COM static store whenever we need to look for our

SharedState object, we can use our weak reference to go straight to it.

https://devblogs.microsoft.com/oldnewthing/20210212-00/?p=104847
https://devblogs.microsoft.com/oldnewthing/20210211-00/?p=104845

2/3

// C++/WinRT
struct SharedState :
 winrt::implements<SharedState,
 winrt::Windows::Foundation::IInspectable>
{
 int some_value = 0;
 winrt::com_ptr<IStream> stream;
 std::vector<winrt::com_ptr<IStorage>> storages;
};

winrt::weak_ptr<SharedState> weakSharedState;

winrt::com_ptr<SharedState>
GetSingletonSharedState()
{
 if (auto state = weakSharedState.get()) {
 return state;
 }

 auto value = winrt::make_self<SharedState>();
 static winrt::slim_mutex lock;
 winrt::slim_lock_guard const guard{ lock };
 if (auto state = weakSharedState.get()) {
 return state;
 }
 props.Insert(name, *value);
 weakSharedState = value;
 return value;
}

The weak reference shortcut avoids having to go rummage around in the static store every

time we need it. It also adds protection against the case where somebody accidentally

overwrites our entry in the static store with an unrelated object: Instead of taking the

unrelated object and casting it to our Shared State , what happens is that our weak

reference fails to resolve, and we go and make a new one.

But wait a second. Isn’t this just jumping back into the fire? We’re using the COM weak

pointer object after COM has been torn down, which is the entire problem we were trying to

fix! The important detail is that this is a COM weak pointer implemented in our DLL, that

refers to an object in our own DLL. We don’t have the problem of calling out to an already-

unloaded DLL. The calls stay entirely within our DLL.

On the other hand, this approach still has its downsides. For one thing, the weak reference

counts as a COM object. When COM calls your Dll Can Unload Now one last time just for

funsies, so you can do some cleanup, your function will say, “Eh, don’t need to clean up,

because I still have active objects (namely, that weak reference).”

https://devblogs.microsoft.com/oldnewthing/20131106-00/?p=2723

3/3

Another downside is that resolving a COM weak reference costs you a virtual method call,

and releasing the resolved result is another virtual method call. This hampers inlining and

other optimizations.

Fortunately, there’s another solution that avoids these problems. We’ll look at it next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

