
1/4

March 3, 2021

Creating a co_await awaitable signal that can be awaited
multiple times, part 3

devblogs.microsoft.com/oldnewthing/20210303-00

Raymond Chen

Last time, we created an awaitable signal that can be awaited multiple times, but noted that it

took kernel transitions a lot. Let’s implement the entire thing in user mode.

https://devblogs.microsoft.com/oldnewthing/20210303-00/?p=104922
https://devblogs.microsoft.com/oldnewthing/20210302-00/?p=104918

2/4

struct awaitable_event
{
 void set() const { shared->set(); }

 auto await_ready() const noexcept
 {
 return shared->await_ready();
 }

 auto await_suspend(
 std::experimental::coroutine_handle<> handle) const
 {
 return shared->await_suspend(handle);
 }

 auto await_resume() const noexcept
 {
 return shared->await_resume();
 }

private:
 struct state
 {
 std::atomic<bool> signaled = false;
 winrt::slim_mutex mutex;
 std::vector<std::experimental::coroutine_handle<>> waiting;

 void set()
 {
 std::vector<std::experimental::coroutine_handle<>> ready;
 {
 auto guard = winrt::slim_lock_guard(mutex);
 signaled.store(true, std::memory_order_relaxed);
 std::swap(waiting, ready);
 }
 for (auto&& handle : ready) handle();
 }

 bool await_ready() const noexcept
 { return signaled.load(std::memory_order_relaxed); }

 bool await_suspend(
 std::experimental::coroutine_handle<> handle)
 {
 auto guard = winrt::slim_lock_guard(mutex);
 if (signaled.load(std::memory_order_relaxed)) return false;
 waiting.push_back(handle);
 return true;
 }

 void await_resume() const noexcept { }
 };

3/4

 std::shared_ptr<state> shared = std::make_shared<state>();
};

The awaitable_event contains a shared_ptr to an internal state object, which is

where all the work really happens. Operations on the awaitable_event are all forwarded

to the state object, so all of the public methods are relatively uninteresting. The

excitement happens in the state object, so let’s focus on that.

To wait for the awaitable_event , we begin with await_ready , which returns whether

the event is already signaled. If it is already signaled, then await_ready returns true ,

which bypasses the suspension entirely. An event that represents “initialization complete”

will spend nearly all of its time in the signaled state, and this short-circuit gives an optimized

path for the compiler so it doesn’t have to spill register variables in the case that the event is

already signaled.

If the event is not signaled, then we get to await_suspend . We take the lock and check a

second time whether the event has been signaled. If so, then we return false meaning “I

reject the suspension. Keep running.”¹

On the other hand, if the event is truly not signaled, then we push the coroutine handle onto

our list of waiting coroutine handles, and we’re done.

To signal the event, we take the lock, mark the event as signaled, and swap out the vector of

waiting coroutine handles for an empty list. These coroutine handles are now ready: We

iterate over the vector and resume each one.

This works relatively well, except that once you have a large number of waiting coroutines

(say, because initialization is taking a really long time), the push_back on the vector might

take a long time if the vector needs to be reallocated. The operation is still amortized O(1),

but the per-instance cost can be as high as O(n).

Furthermore, the push_back can throw an exception due to low memory (note that

await_suspend is not marked noexcept).

We’ll address both of these issues next time.

¹ I always have to pause to think whenever I get to the return statements in the await_

ready and await_suspend methods, because the return values have opposite sense. I

have to remember that you want to “suspend if not ready”.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

