
1/10

March 10, 2021

Creating other types of synchronization objects that can
be used with co_await, part 2: The basic library

devblogs.microsoft.com/oldnewthing/20210310-00

Raymond Chen

Last time, I teased a library for building awaitable synchronization objects. It builds on the

code had earlier written for one-shot events by distilling the pattern to its essence and then

rebuilding it in a more generic way.

We start with the linked list nodes which are used to keep track of coroutines who are waiting

for the synchronization object.

namespace async_helpers::impl
{
 struct node_base
 {
 node_base* next;
 node_base* prev;
 };

 struct node_handle : node_base
 {
 std::experimental::coroutine_handle<> handle{};
 };

 template<typename Extra>
 struct node : node_handle
 {
 template<typename... Args>
 node(Args&&... args) :
 extra(std::forward<Args>(args)...) {}

 Extra extra;
 };
}

The node_base is the node for a doubly-linked list. Derived from that is a node_handle

that also carries a coroutine handle payload, and further derived from that is a

node<Extra> which allows us to attach other payload to the node.

https://devblogs.microsoft.com/oldnewthing/20210310-00/?p=104945
https://devblogs.microsoft.com/oldnewthing/20210309-00/?p=104942

2/10

Next comes the linked list of nodes:

namespace async_helpers
{
 struct node_list : impl::node_base
 {
 node_list() : node_base{ this, this } {}
 node_list(node_list const&) = delete;
 void operator=(node_list const&) = delete;

 bool empty() const noexcept
 {
 return next == this;
 }

 void append_node(impl::node_base& node) noexcept
 {
 node.next = this;
 node.prev = prev;
 prev->next = std::addressof(node);
 prev = std::addressof(node);
 }

 bool append_list(node_list& other) noexcept
 {
 if (other.empty()) return false;
 other.prev->next = next;
 next->prev = other.prev;
 next = other.next;
 next->prev = this;
 other.next = other.prev = std::addressof(other);
 return true;
 }

 impl::node_base* peek_head() const noexcept
 {
 return empty() ? nullptr : next;
 }

 impl::node_base* try_remove_head() noexcept
 {
 if (empty()) return nullptr;
 auto node = next;
 next = node->next;
 next->prev = this;
 return node;
 }
 };
}

3/10

These are unexciting operations on doubly-linked lists. We have to write them ourselves

because the C++ standard library uses non-intrusive linked lists, but we want intrusive

linked lists to avoid the error conditions associated with memory allocation failures.

The node list is represented by a sentinel node that marks the beginning/end of the list.

There is a little quirkiness in that I use std::addressof instead of the & operator, out of

an abundance of caution, in case somebody decides to overload the & operator.

namespace async_helpers
{
 // Specialize if you need extra data for co_await.
 template<typename State> struct extra_await_data {};
}

We provide a traits class that lets you attach extra information to your awaiter to record

additional context about awaiting. This will come in handy when we try to implement

reader/writer locks.

The real excitement is in our state object. The intended usage is that you derive your full

state object from the basic one, and the basic one uses CRTP to allow your full state object to

customize certain operations. Last time, we saw how we could use this pattern for a one-shot

event.

We’ll look at the awaitable_state a little bit at a time.

namespace async_helpers
{
 template<typename State>
 class awaitable_state
 {
 std::mutex mutex;
 node_list sentinel;

 State& parent() { return static_cast<State&>(*this); }

 auto& extra_node(impl::node_base& node)
 { static_cast<impl::node<extra_await_data>&>(node); }

An awaitable object’s state consists of a list of waiting coroutines, protected by a mutex. The

helper function parent() helps with CRPT by downcasting the awaitable_state to the

full State object. Similarly, extra_node takes a node_base and downcasts it all the

way to a node<extra_await_data> so we can access the full node complete with extra

data.

 public:
 using extra_await_data = extra_await_data<State>;
 using node_list = async_helpers::node_list;

4/10

For convenience, we give names to the extra data and the node list itself.

 bool fast_claim(extra_await_data const&) const noexcept
 { return false; }

The fast_claim method is optional. If the derived class doesn’t implement it, then we

provide a default implementation that says “Nope, must do it the slow way.”

 extra_await_data* peek_head() const noexcept
 {
 auto node = sentinel.peek_head();
 return node ? &extra_node(node)->extra : nullptr;
 }

The derived class can use peek_head to peek at the extra data associated with the

coroutine at the head of the wait list. If the wait list is empty, then the method returns

nullptr . This method may be called only from within an action, since it requires that the

lock be held.

Also from within an action, the derived class can ask for one waiting coroutine to be

resumed:

 bool resume_one(node_list& list) noexcept
 {
 auto node = sentinel.try_remove_head();
 if (!node) return false;
 list.append_node(*node);
 return true;
 }

This is done by unlinking the head node from the waiting list and appending it to the resume

list. We append to the tail of the resume list to preserve FIFO.

Another thing an action can do is ask for all of the waiting coroutines to be released.

 bool resume_all(node_list& list) noexcept
 {
 return list.append_list(sentinel);
 }

This is equivalent to calling resume_one in a loop until it fails, but we can do it more

efficiently by moving the entire list at once.

When a coroutine awaits the synchronization object, we ask await_suspend to do the

work:

5/10

 bool await_suspend(
 std::experimental::coroutine_handle<> handle,
 impl::node<extra_await_data>& node)
 {
 auto guard = std::lock_guard(mutex);
 if (parent().claim(node.extra)) return false;
 node.handle = handle;
 sentinel.append_node(node);
 return true;
 }

The caller provides a coroutine handle and a preallocated node . We enter the lock and try to

claim the synchronization object. If successful, then we are done, and we return false to

tell the coroutine machinery that the coroutine should resume immediately. Otherwise, we

remember the coroutine handle and append the node to the list of waiters, returning true

to complete the suspension.

 void await_resume(
 impl::node<extra_await_data>& node) noexcept
 {
 node.handle = nullptr;
 }

When the coroutine resumes, we null out the coroutine handle so that we know that the

coroutine is no longer suspended and that we therefore are no longer in the cancellation case.

I’ll discuss later why we do it in await_resume .

 void destruct_node(impl::node_base& node) noexcept
 {
 if (node.handle) {
 auto guard = std::lock_guard(mutex);
 node.next = node.prev->next;
 node.prev = node.next->prev;
 }
 }

This is part of our accommodation for cancellation: In the case that a waiting coroutine is

destroyed, we check if it has a pending resumption handle. If so, then we are in the

cancellation case, and we unlink it from the list of waiters. There is a race here: If the

coroutine has already been scheduled for resumption, our attempt to unlink it will corrupt

memory because the prev and next members of the node point to already-resumed

coroutines. However, as we discussed earlier, if this happens, then it means that the caller

was already in a race condition, trying to destroy a coroutine as it is resuming. It is the

caller’s responsibility to ensure that destroying a suspended coroutine happens only when it

can guarantee that the coroutine is not at risk of resumption.¹

The next bit is the part that makes actions happen:

6/10

 template<typename... Params, typename... Args>
 void action_impl(
 void (State::*handler)(node_list&, Params...),
 Args&&... args)
 {
 node_list list;
 {
 auto guard = std::lock_guard(mutex);
 (parent().*handler)(list,
 std::forward<Args>(args)...);
 }
 resume_list(list);
 }

We create an empty node list outside the lock, take the lock, and then call the handler,

forwarding all the parameters. When the handler returns, we drop the lock and resume all

the coroutines it had requested to be resumed, using this resume_list method:

 private:
 void resume_list(node_list& list)
 {
 auto node = list.next;
 while (node != std::addressof(list))
 {
 resume_node(std::exchange(node, node->next));
 }
 }

 void resume_node(impl::node_base* node) noexcept
 {
 extra_node(*node).handle.resume();
 }
 };

Resuming a list consists of calling resume_node on each node in the list. Note that the

node is owned by the coroutine, so resuming the coroutine will cause the awaiter to be

destructed, and the node will disappear with it. We therefore have to make sure that we do

not touch the node after resuming the coroutine. In this case, it means that we advance to the

next node and pull out the handle before resuming the handle.

This example resumes the coroutines synchronously. We’ll work on asynchronous

resumption next time.

The last piece is defining the synchronization object itself:

7/10

 template<typename State>
 class awaitable_sync_object
 {
 std::shared_ptr<State> shared;

 public:
 template<typename... Args>
 awaitable_sync_object(Args&&... args) :
 shared(std::make_shared<State>(
 std::forward<Args>(args)...)) {}

 template<typename Arg = typename State::extra_await_data>
 auto make_awaiter(Arg arg = {})
 { return awaiter{ *shared, std::forward<Arg>(arg) }; }

 auto operator co_await() { return awaiter{ *shared }; }

 protected:
 using state = State;

 State& get_state() const noexcept { return *shared; }

 template<typename... Args>
 void action_impl(Args&&... args) const
 {
 shared->action_impl(std::forward<Args>(args)...);
 }

 struct awaiter
 {
 template<typename... Args>
 awaiter(State& state, Args&&... args)
 : s(state), node(std::forward<Args>(args)...) {}

 State& s;
 impl::node<extra_await_data<State>> node;

 bool await_ready()
 { return s.fast_claim(node.extra); }

 bool await_suspend(
 std::experimental::coroutine_handle<> handle)
 { return s.await_suspend(handle, node); }

 void await_resume()
 { s.await_resume(node); }

 ~awaiter() { s.destruct_node(node); }
 };
 };
}

8/10

The awaitable_sync_object is a wrapper around a shared_ptr of the State . The

shared state is constructed by forwarding all of the awaitable_sync_object constructor

parameters to the State constructor, so that you can construct the State object with any

default initial state. For example, semaphores may want to be initialized with an initial token

count and possibly also a maximum token count.

There is also a make_awaiter method for creating the awaiter with optional extra_

await_data , if you need to pass additional context for a particular await operation.

And the last public method is the co_await operator which creates our custom-defined

awaiter .

The protected methods are for the custom synchronization object to use as part of its

implementation. The get_state() method lets the implementation access its own state.

The action_impl forwards its parameters to the state’s action_impl method, which

we discussed earlier.

The awaiter is generalized so that you can construct the extra data in the node. The

await_ready tries to do a fast_claim , which might allow the caller to bypass

suspension if it was able to claim the object immediately. The await_suspend method

forwards to the state, which we discussed earlier. The await_resume method asks the

State to clean up, and recall that the method sets the handle to null to indicate that the

coroutine is no longer suspended. We use that fact in the awaiter’s destructor to detect the

case where the coroutine is destroyed while suspended: In that case, the handle will still

hold the coroutine’s continuation (which is being abandoned), and that tells us to unlink this

coroutine from the list of waiters.

There is a race condition here, in the case that a coroutine is destroyed while a resumption is

in flight, but as I noted earlier, this is a bug in the caller, so we don’t need to defend against it

particularly hard. I chose to null out the handle in await_resume because that is more

likely to be optimized out by the compiler, seeing as the awaiter’s destructor runs

immediately after await_resume , which increases the likelihood that the compiler will be

able to propagate the value into the awaiter’s destructor and realize that the code path is dead

in the case of normal resumption.

Now, we could have nulled out the coroutine handle at many points in the lifetime of the

awaiter. Why did I choose to do it in await_resume ? Let’s sketch out the various possible

fates of the awaiter:

Awaiter constructed
 handle = nullptr;

↓ ↓

9/10

No suspension Suspended
 await_suspend

 handle = coroutine;

 ↓ ↘

 Resume
 resume_node

 Cancelled

 ↓

 Resuming
 resume_node_callback

 ↓

 Resumed
 await_ready

 handle = nullptr;

↓ ↓ ↓

Awaiter destructed

In the case where the coroutine doesn’t suspend because it was able to claim the

synchronization object, the handle starts out as nullptr and stays that way until it is

destructed. I’m hoping the optimizer can observe that the handle is not modified through

this non-suspending path. The destructor’s call to destruct_node will therefore do

nothing, since it does work only if the handle is non-null, and can consequently be

completely optimized out.

In the case where the coroutine is cancelled, the coroutine handle is set to a non-null value in

await_suspend after the coroutine has suspended. When the coroutine is cancelled, the

coroutine’s destructor destructs the awaiter, and at that point, the destruct_node

observes a non-null handle and knows to unlink the node from the list of waiters.

The last case is the one down the middle, and it’s the most complicated one: The

synchronization object cannot be claimed, so the handle gets set to the coroutine handle

after the coroutine suspends. Later, some code signals the synchronization object, and it

resumes all of the waiters. Eventually, we get to the await_ready which is called inside the

now-resumed coroutine, and it sets the handle back to null to indicate that everything is

back to normal. By setting the handle to null at the last moment before destruction, I’m

hoping the optimizer can recognize that the destructor’s call to destruct_node will do

nothing, since it does work only if the handle is non-null, and can be completely optimized

out.

10/10

It looks like gcc 10.1 and the Microsoft Visual C++ 19.24 compiler both can take my hints,

and they do do optimize out the destruct_node calls in the two cases I noted. So hooray

for that.

Okay, that was a whirlwind tour of our little library for writing generic awaitable

synchronization objects. I did mention that this version resumes coroutines synchronously.

Next time, we’ll make it resume coroutines on a thread pool.

¹ We could defend against this by having resume_list make the node point to itself, so

that if the race occurs, we don’t corrupt memory immediately. But really, all we are doing is

delaying the corruption, because the resumption will try to resume a destroyed coroutine,

which will corrupt memory in a different way. Maybe we should std::terminate .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210311-00/?p=104949
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

