
1/4

March 11, 2021

Creating other types of synchronization objects that can
be used with co_await, part 3: Parallel resumption

devblogs.microsoft.com/oldnewthing/20210311-00

Raymond Chen

Last time, we developed a library for building awaitable synchronization objects. I noted that

when the coroutines are released, they are resumed in sequence, which means that one

coroutine can prevent others from progressing. Let’s resume them in parallel.

One option is to use Try Submit Threadpool Callback to put the resumption on the thread

pool. In the awaitable_state class, replace the resume_node method with this

version:

 static void CALLBACK resume_node_callback(
 PTP_CALLBACK_INSTANCE, void* context) noexcept
 {
 std::experimental::coroutine_handle<>::
 from_address(context).resume();
 }

 void resume_node(impl::node_base* node) noexecpt
 {
 if (!TrySubmitThreadpoolCallback(
 resume_node_callback,
 extra_node(*node).handle.address(),
 nullptr))
 {
 std::terminate(); // fatal
 }
 }

Instead of resuming the handle immediately and synchronously, we submit a callback to the

thread pool, and have the callback resume the coroutine.

This works, but there is a problem if Try Submit Threadpool Callback fails, since we have

no way to report an error to the caller. All we can do is terminate the process.

https://devblogs.microsoft.com/oldnewthing/20210311-00/?p=104949
https://devblogs.microsoft.com/oldnewthing/20210310-00/?p=104945

2/4

An alternative is to use the Create Threadpool Work / Submit Threadpool Work pattern

which has the advantage of front-loading all of the error conditions. That way, we can throw a

low memory exception at the point of the await rather than finding ourselves stuck when it

comes time to resume.

Our node_handle now babysits a threadpool work item:

 struct node_handle : node_base
 {
 PTP_WORK work{};
 };

This member records the work item that we will use to resume the coroutine. It is non-null if

the coroutine is on the synchronization object’s wait list. We set this up as part of the

suspension:

 bool await_suspend(
 std::experimental::coroutine_handle<> handle,
 impl::node<extra_await_data>& node)
 {
 auto guard = std::lock_guard(mutex);
 if (parent().claim(node.extra)) return false;
 node.work = check_pointer(
 CreateThreadpoolWork(resume_node_callback,
 handle.address(), nullptr));
 sentinel.append_node(node);
 return true;
 }

When we realize that we need to suspend, we create a work item that will perform the

resumption. We can raise a low memory exception at this point, and it will be captured into

the caller.

Resuming the coroutine node consists of submitting the work:

 void resume_node(impl::node_base* node) noexcept
 {
 SubmitThreadpoolWork(extra_node(*node).work);
 }

And we move the work item cleanup into the callback function:

3/4

 static void CALLBACK resume_node_callback(
 PTP_CALLBACK_INSTANCE, void* context, PTP_WORK work)
 noexcept
 {
 CloseThreadpoolWork(work);
 std::experimental::coroutine_handle<>::
 from_address(context).resume();
 }

The work can be closed at any time after it is submitted: Closing a submitted work item does

not cancel the outstanding work. We don’t want to slow down the resume_list method,

so we make the work item responsible for its own bookkeeping: That way, the cost is paid by

the resuming coroutine rather than the signaling one.

The other bit of bookkeeping is nulling out the work now that it’s been closed.

 void await_resume(
 impl::node<extra_await_data>& node) noexcept
 {
 node.work = nullptr;
 }

And finally, we tweak our abandonment detection:

 void unlink_node(impl::node_base& node) noexcept
 {
 auto work = extra_node(*node).work;
 if (node.work) {
 CloseThreadpoolWork(work);
 auto guard = std::lock_guard(mutex);
 node.next = node.prev->next;
 node.prev = node.next->prev;
 }
 }

There is an additional optimization decision to be made here, which is finding the best place

to close the work item. Here’s the diagram again:

Awaiter constructed
 work = nullptr;

↓ ↓

No suspension Suspended
 await_suspend

 work = work item;

 ↓ ↘

4/4

 Resume
 resume_node

 Abandoned

 ↓

 Resuming
 resume_node_callback

 work closed

 ↓

 Resumed
 await_ready

 work = nullptr;

↓ ↓ ↓

Awaiter destructed

The analyses for the no-suspend path and the abandonment path are the same as last time.

The extra decision in the center path is deciding when to close the work item. I decided to do

it in resume_node_callback : I definitely want the work item to be responsible for closing

its own work. That avoids adding extra responsibilities to the signaling coroutine, which is

only fair because you don’t want to bog down the signaling code with work that wasn’t even

its idea! And to reduce code size, I want closing the work item to be done in shared code,

which in this case is the thread pool work item callback itself. That same callback is going to

be used for all resumptions of all nodes used by any client of this library. If closing the work

item had been moved to await_resume , then that would get inlined into every coroutine’s

resumption code.

Okay, that was perhaps a deeper dive than you wanted into the subject of creating an

awaitable synchronization object. But now that I have this whole thing created, I want to

drive it around a bit. We’ll start that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210312-00/?p=104955
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

