
1/5

March 15, 2021

Creating other types of synchronization objects that can
be used with co_await, part 5: The auto-reset event

devblogs.microsoft.com/oldnewthing/20210315-00

Raymond Chen

Our next stop in showing off our library for building awaitable synchronization objects is the

auto-reset event.

The auto-reset event is trickier because claiming a token also mutates the object’s state. Many

of our synchronization objects are of this ilk, so let’s add a helper method to our template:

   template<typename State> 
   class awaitable_state 
   { 
   ... 
   public: 
       template<bool fast, typename T, 
           typename...Args, typename...Params> 
       bool calc_claim( 
           std::atomic<T>& value, 
           bool (*transition)(T, T&, Params&&...), 
           T initial, 
           Args&&... args) 
       { 
           constexpr auto order = fast 
               ? std::memory_order_acquire 
               : std::memory_order_relaxed; 
           for (;;) { 
               T future; 
               if (!transition(initial, future, 
                   std::forward<Args>(args)...)) { 
                   return false; 
               } 
               auto success = value.compare_exchange_weak( 
                   initial, future, order, 
                   std::memory_order_relaxed); 
               if constexpr (fast) return success; 
               else if (success) return success; 
           } 
       } 

https://devblogs.microsoft.com/oldnewthing/20210315-00/?p=104964
https://devblogs.microsoft.com/oldnewthing/20210311-00/?p=104949


2/5

This helper function calc_claim  implements a common state transition pattern: See if the

object is in a claimable state, and if so, try to transition it to a claimed state. We do this by

starting with an optimistic guess at the value, calculate the new state (by a transition

method the CRTP derived class is expected to implement), and then try to transition

atomatically to that state.

The transition function can return false  to mean that the transition is not allowed, and we

should suspend.

The fast  version is performed outside the lock: It uses acquire semantics on the compare-

exchange to ensure that the data protected by the synchronization object is not access prior

to acquisition. The fast version also uses a weak compare-exchange and doesn’t bother

retrying on compare-exchange failure: In other words, it simply gives up after one try if the

answer was “maybe”. I figure that if I can’t transition immediately, I may as well spend my

memory barrier money on entering the lock for real.

The slow version runs inside the lock. Acquiring the lock already set up a memory barrier, so

we already established the acquire barrier and don’t need to set up another one. The slow

version retries until gets a definite yes or no answer.

You might be tempted to use a simple value.store()  to update the state under the lock,

but that would be wrong because it could race against another thread that changed the state

using the no-lock fast path.

The odd phrasing of the return success;  code path is necessary to avoid “conditional

expression is constant” warnings when written the somewhat less awkward way:

   if (fast || success) return success; 

The parameter after the transition function is an optimistic guess as to the initial value. In

the case of an auto-reset event, we know that the only chance of a successful fast claim is if

the current state is true , so we can just assume that it is and let the compare-exchange tell

us if we were wrong.

Any additional parameters after the initial value are forwarded to the transition function as

extra parameters.



3/5

       template<bool fast, typename T, 
           typename...Args> 
       bool calc_claim( 
           std::atomic<T>& value, 
           T initial, 
           Args&&... args) 
       { 
           return calc_claim<fast>(value, 
               &State::transition, 
               initial, 
               std::forward<Args>(args)...); 
       } 

       template<bool fast, typename T, 
           typename...Args, typename...Params> 
       bool calc_claim( 
           std::atomic<T>& value, 
           bool (*transition)(T, T&, Params&&...), 
           Args&&... args) 
       { 
           return calc_claim<fast>(value, 
               transition, 
               value.load(std::memory_order_relaxed), 
               std::forward<Args>(args)...); 
       } 

       template<bool fast, typename T> 
       bool calc_claim( 
           std::atomic<T>& value) 
       { 
           return calc_claim<fast>(value, 
               &State::transition, 
               value.load(std::memory_order_relaxed)); 
       } 

Other types of synchronization objects may not have a clear single optimistic guess, so you

can omit the initial value and it will just start with the atomic variable’s current value. You

can also omit the name of the transition function, and we’ll look for a static method named

transition .

Okay, now that we have those helpers, let’s look at the auto reset event handle.



4/5

struct awaitable_auto_reset_event_state : 
   async_helpers::awaitable_state<awaitable_auto_reset_event_state> 
{ 
   awaitable_auto_reset_event_state(bool initial) 
   : signaled(initial) {} 

   std::atomic<bool> signaled; 

   static bool transition(bool current, bool& future) noexcept 
   { 
       if (!current) return false; 
       future = false; 
       return true; 
   } 

   bool fast_claim(extra_await_data const&) noexcept 
   { 
       return calc_claim<true>(signaled, true); 
   } 

   bool claim(extra_await_data const&) noexcept 
   { 
       return calc_claim<false>(signaled); 
   } 

   void set(node_list& list) noexcept 
   { 
       if (!resume_one(list)) { 
           signaled.store(true, std::memory_order_relaxed); 
       } 
   } 
};

struct awaitable_auto_reset_event 
   : async_helpers::awaitable_sync_object<awaitable_auto_reset_event_state> 
{ 
   awaitable_auto_reset_event(bool initial = false) : 
       awaitable_sync_object(initial) { } 

   void set() noexcept 
   { 
       action_impl(&state::set); 
   } 

   void reset() noexcept 
   { 
       get_state().signaled.store(false, 
           std::memory_order_release); 
   } 
};



5/5

In the case of an auto-reset event, the only case where the claim will succeeed is if the signal

state is true , so we pass that as the optimistic initial value for the fast-claim case.

The other difference between the manual reset event and the auto-reset event is the behavior

when there is a waiter: The auto-reset event releases at most one waiter, and if that happens,

then the event remains unset. Only if there is nobody waiting on the event does it transition

to the signaled state, ready to be consumed by the next awaiter.

That was trickier that I thought. Next time, we’ll look at something that is basically an

extended version of the auto-reset event: The semaphore.

Exercise: What is wrong with this version of set :

   void set(node_list& list) noexcept 
   { 
       signaled.store(true, std::memory_order_relaxed); 
       if (resume_one(list)) { 
           signaled.store(false, std::memory_order_relaxed); 
       } 
   } 

¹ I could have addressed this by creating a marker type called start_with_current_

value_t  or something like that, but I had no use for it right now, so I skipped it. You can

add it yourself if it turns out you need it.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

