
1/2

March 17, 2021

Creating other types of synchronization objects that can
be used with co_await, part 7: The mutex and recursive

devblogs.microsoft.com/oldnewthing/20210317-00

Raymond Chen

Our next stop in showing off our library for building awaitable synchronization objects are

the mutex and recursive mutex.

The mutex and recursive mutex are strange objects when applied to coroutines, because the

traditional mutex and recursive mutex apply to threads, and threads are this implied context

that every function has and shares with the functions it calls, even though it may not realize

it. But coroutines don’t have that. When one coroutine awaits another coroutine, there is no

formal connection between the two, so when you do this:

IAsyncAction Outer()
{
 co_await some_mutex.lock();
 co_await Inner();
}

IAsyncAction Inner()
{
 some_mutex.unlock();
}

the mutex has no way of knowing that the Outer lock matches the Inner unlock. It just

has to trust the caller.

The lack of coroutine flow identity is particularly troublesome for the recursive mutex,

because it has no way of knowing whether a second lock came from the same logical

coroutine chain that performed the initial lock.

https://devblogs.microsoft.com/oldnewthing/20210317-00/?p=104973
https://devblogs.microsoft.com/oldnewthing/20210311-00/?p=104949

2/2

IAsyncAction Outer()
{
 co_await some_mutex.lock();
 co_await Inner();
 some_mutex.unlock();
}

IAsyncAction Inner()
{
 co_await some_mutex.lock();
 something();
 some_mutex.unlock();
}

If some_mutex were an asynchronous recursive mutex, it wouldn’t be able to determine

whether the call from Inner should be allowed, since it has no access to coroutine identity,

nor to the dependency relationships among coroutines.

Basically, there are no coroutine mutexes or recursive mutexes. Recursive mutexes simply

cannot exist, and once you strip away the thread identity features of mutexes, all you have left

is an auto-reset event.

using awaitable_mutex = awaitable_auto_reset_event;

But the shared mutex, that’s interesting. We’ll look at that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

