
1/5

March 23, 2021

Creating a task completion source for a C++ coroutine:
Producing a result

devblogs.microsoft.com/oldnewthing/20210323-00

Raymond Chen

We’ve been looking at creating different types of awaitable synchronization objects. This

time, we’ll create something analogous to what C# calls a Task Completion Source and

what PPL calls a task_completion_event . For lack of a better name, I’m going to call it a

result_holder .

A result_holder is an object that you can put a result into, and you can co_await it to

wait for the result to appear. Once a result has been set, it can be retrieved multiple times.

You can use this sort of object for one-time initialization, or if you want to cache the results of

earlier calculations.

First, we need to teach our library about coroutines that return values. Up until now, the

result of a co_await had always been void .

https://devblogs.microsoft.com/oldnewthing/20210323-00/?p=104987
https://devblogs.microsoft.com/oldnewthing/20210311-00/?p=104949

2/5

 template<typename State>
 class awaitable_state
 {
 ...

 void get_result() const noexcept { }

 auto await_resume(
 impl::node<extra_await_data>& node) noexcept
 {
 node.handle = nullptr;
 return parent().get_result();
 }
 ...
 };

 template<typename State>
 class awaitable_sync_object
 {
 ...

 struct awaiter
 {
 ...

 auto await_resume()
 { return s.await_resume(node); }

 ...
 }
 };

We allow the CRTP client to implement a method get_result , and whatever that method

returns is the result of the co_await . By default, it’s just void , but we’re going to override

it in our result_holder .

3/5

template<typename T>
struct result_holder_state :
 async_helpers::awaitable_state<result_holder_state<T>>
{
 std::atomic<bool> ready{ false };

 union optional
 {
 optional() {}
 ~optional() {}

 T value;
 } result;

 result_holder_state() {}
 result_holder_state(result_holder_state const&) = delete;
 void operator=(result_holder_state const&) = delete;

 ~result_holder_state()
 {
 if (ready.load(std::memory_order_relaxed)) {
 result.value.~T();
 }
 }

We build our own equivalent of std::optional<T> that supports querying atomically

whether a value has been set. The atomic boolean ready becomes true when a value is

set, and the union result holds the value if so. We use a union because unions do not

construct or destruct their members by default. But it means that we must remember to do

the construction and destruction ourselves.

This is not a general-purpose atomic optional because it supports only one-way

transitions: You can go from unset to set, but once set, it’s stuck forever. This limitation

allows the discriminant (ready) to be atomic.

 using typename result_holder_state::extra_await_data;
 using typename result_holder_state::node_list;

Since our state type is now a template type, we have to tell the compiler which identifiers are

dependent names. We may as well just import them to save ourselves some typing.

 bool fast_claim(extra_await_data const&) noexcept
 {
 return ready.load(std::memory_order_acquire);
 }

 bool claim(extra_await_data const&) noexcept
 {
 return ready.load(std::memory_order_relaxed);
 }

4/5

If someone tries to co_await , we let the await complete immediately if the value is already

ready.

 void set_result(node_list& list, T v)
 {
 if (!ready.load(std::memory_order_relaxed)) {
 new (std::addressof(result.value))
 T{ std::move<T>(v) };
 ready.store(true, std::memory_order_release);
 this->resume_all(list);
 }
 }

To set the result, we first check that we don’t have a result. If so, then we do nothing. You can

set the result only once. Otherwise, we would have a race condition if one coroutine fetches

the value while another is changing it.

If this is the first time anyone is setting the result, then we move the value into our private

storage, using the placement new constructor. We provide the storage address via

std::addressof to protect against the possibility that T has an overloaded operator& .

Only after the value is definitely set into our private storage do we mark the value as ready ,

and we do it with release semantics so that the effects of the constructor are fully visible

before telling everybody that it’s ready to be read.

It’s also important to be aware that the constructor of T may throw an exception. In that

case, the storage is destructed back to its uninitialized state, and the exception escapes.

Another reason it’s important not to set ready or to add coroutines to the list before the

value is definitely constructed.

 T get_result()
 {
 return result.value;
 }
};

And here’s where we override get_result so that the result of a co_await is the

captured value.

We technically need an acquire fence here to ensure that all the changes to value made by

the set_result are visible to the current. We get away without one because we put an

acquire fence in await_ready !

5/5

template<typename T>
struct result_holder
 : async_helpers::awaitable_sync_object<
 result_holder_state<T>>
{
 using typename result_holder::state;

 void set_result(T result) const noexcept
 {
 this->action_impl(&state::set_result,
 std::move(result));
 }
};

The object itself is not particularly exciting. Setting the result on the main object moves the

value into the state.

Now you have an object that you can put results into, and co_await ing it will wait until

results appear.

result_holder<int> universe;

// coroutine 1:
auto answer = co_await universe;

// coroutine 2:
universe.set_result(42);

But this code is still broken.

We’ll look more closely next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

