
1/4

March 24, 2021

Creating a task completion source for a C++ coroutine:
Producing a result with references

devblogs.microsoft.com/oldnewthing/20210324-00

Raymond Chen

Last time, we created a result_holder that can be awaited until it is assigned a result, and I

noted that the code was broken.

One of the reasons that it’s broken is that it doesn’t handle references properly.

result_holder<int&> counter; // errors!

If T is a reference, we run into trouble trying to put it into a union:

 union optional
 {
 optional() {}
 ~optional() {}

 T value; // oops
 } result;

References may not be members of a union. There’s also the problem that certain C++/CX

types also cannot be members of a union. So what do you do if T is one of those “forbidden

in a union” types?

A common workaround is to wrap the illegal type inside a legal one: Create a wrapper

structure that has a single member, namely the type that can’t go into a union. Then put the

structure in the union.

https://devblogs.microsoft.com/oldnewthing/20210324-00/?p=104995
https://devblogs.microsoft.com/oldnewthing/20210323-00/?p=104987
https://devblogs.microsoft.com/oldnewthing/20200914-00/?p=104218

2/4

 struct wrapper
 {
 T value;
 };

 union optional
 {
 optional() {}
 ~optional() {}

 wrapper wrap;
 } result;

And now every reference to the wrapped value must go through the wrapper.

 ~result_holder_state()
 {
 if (ready.load(std::memory_order_relaxed)) {
 result.wrap.~wrapper();
 }
 }

 ...

 void set_result(node_list& list, T v)
 {
 if (!ready.load(std::memory_order_relaxed)) {
 new (std::addressof(result.wrap))
 wrapper{ std::forward<T>(v) };
 ready.store(true, std::memory_order_release);
 this->resume_all(list);
 }
 }
 ...
};

template<typename T>
struct result_holder
 : async_helpers::awaitable_sync_object<
 result_holder_state<T>>
{
 ...

 void set_result(T result) const noexcept
 {
 this->action_impl(&state::set_result,
 std::forward<T>(result));
 }
};

3/4

Note also that we use std::forward instead of std::move to construct the wrapper.

Forwarding a reference preserves reference-ness, and forwarding a non-reference moves it. (I

always have to go back and work out the cases by hand to convince myself that this is true.)

Okay, so that’s how we can get the reference into the result holder. But how do we get it back

out?

 T get_result()
 {
 return result.wrap.value;
 }
};

Now that get_result returns a reference, we have to make sure that the reference doesn’t

get decayed to a value as it propagates out of get_result back to the awaiter and

ultimately to the caller of co_await :

 template<typename State>
 class awaitable_state
 {
 ...

 decltype(auto) await_resume(
 impl::node<extra_await_data>& node) noexcept
 {
 node.handle = nullptr;
 return parent().get_result();
 }
 ...
 };

 template<typename State>
 class awaitable_sync_object
 {
 ...

 struct awaiter
 {
 ...

 decltype(auto) await_resume()
 { return s.await_resume(node); }

 ...
 }
 };

The decltype(auto) specifier allows you to forward a return type perfectly, without

incurring the decay that normally occurs if you had used auto .

4/4

Okay, so now we can put a reference in our result_holder . There’s another thing we can’t

put in our result_holder : We’ll look at it next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210325-00/?p=105002
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

