
1/3

March 29, 2021

C++ coroutines: The mental model for coroutine
promises

devblogs.microsoft.com/oldnewthing/20210329-00

Raymond Chen

My earlier series on getting started with awaitable objects looked at how you produce

awaitable objects, but up until now we haven’t been looking at the other side: How can you be

an object that can await other objects?

Lewis Baker covered this topic some time ago, but I’m going to take a stab at it as well.

Because maybe if there are enough articles about it, one of them will actually make sense to

you.

The idea behind language coroutines is that the coroutine function is transformed into a state

machine, formally known as a coroutine state. The coroutine is represented to callers by

some sort of object, and depending on how fancy you get, that object may provide

functionality such as basic things like co_await ing the return value to retrieve the final

result of the coroutine function, or fancier things like interacting with the coroutine-in-

progress, say, by cancelling it or retrieving progress information.

The coroutine state is represented in memory by an aggregate of three things:

Compiler bookkeeping

Promise object

Coroutine “stack frame”

The compiler bookkeeping is where the compiler puts its state machine, so that it knows

where to resume a suspended coroutine. It also needs to keep track of how far the code in the

coroutine has reached, so that it knows which variables need to be destructed if the coroutine

state is destroyed before the coroutine reaches its natural end.

The coroutine stack frame contains all the stuff that used to go into the traditional stack

frame. Inbound parameters, local variables, that sort of thing.

https://devblogs.microsoft.com/oldnewthing/20210329-00/?p=105015
https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195
http://lewissbaker.github.io/
https://lewissbaker.github.io/2018/09/05/understanding-the-promise-type

2/3

Of course, this is all compiler implementation detail, but it’s still handy to think of a

coroutine state of consisting of these three pieces, even if it’s not literally how things are

organized. For example, the compiler might keep its live-object information in the space it

reserved for the stack frame, particularly if the stack frame is where it kept the live-object

information in non-coroutine functions. And if a local variable’s lifetime does not extend

across a suspension point, then it could be stored on the regular stack instead of inside the

coroutine state’s stack frame.

Anyway, the important thing is that there is this bonus “promise” object hiding inside the

coroutine state. This promise object is something you provide as the implementor of the

coroutine, and its main job is to mediate communication between the coroutine and the

outside world.

For concreteness, let’s say that we have something like this:

task DoSomethingAsync()

{

 co_await something();

 co_return 42;

}

To start things off, the compiler allocates a coroutine state, constructs the promise object

inside the coroutine state, let’s call it p , and then calls p.get_return_object() to ask the

promise to produce the object that is returned to the caller, which matches the nominal

return value of the coroutine. In the above example, p.get_return_object() should

return a task .

The promise typically arranges so that it and the return object work together to establish the

communication channel between the coroutine and its caller.

When the coroutine performs a co_return , the compiler calls p.return_value() ,

passing the value that the coroutine returned. In the above example, the compiler will call

p.return_value(42) . The promise will typically put this value somewhere that the return

object can access, so that the caller of the coroutine can obtain the result.

Here’s a diagram of how the pieces fit together. If a caller does t = DoSomethingAsync() ,

what we have is this:

Coroutine state p.get_

return_

object()

Caller

bookkeeping

promise →→→→→→ t

stack frame

3/3

The promise produced a task , which the caller now possesses. Most of the time, the task

object will be something the caller can co_await , so that the caller can retrieve the result

produced by the coroutine.

Eventually, the coroutine finishes with a co_return , and the coroutine state forwards the

value through to the original return object t , and that in turn causes the caller’s co_await

t to complete with that result.

Coroutine function p.return_

value(42);

Coroutine state Caller

 bookkeeping

co_return 42; →→→ promise →→→ t

 stack frame

The compiler calls p.return_value(42) to pass the result from the coroutine to the

promise, and it’s up to the promise to figure out how to propagate that value to the task.

Next time, we’ll take these diagrams and fill them in with actual code.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

