
1/5

March 30, 2021

C++ coroutines: Basic implementation of a promise type
devblogs.microsoft.com/oldnewthing/20210330-00

Raymond Chen

Last time, we diagrammed out how the pieces of a coroutine fit together. Today we’ll fill in

the diagram with code.

Fortunately, most of the hard work has already been done for us by the result_holder

class we already wrote. We just need to adapt it to the format required by the coroutine

specification.

https://devblogs.microsoft.com/oldnewthing/20210330-00/?p=105019
https://devblogs.microsoft.com/oldnewthing/20210329-00/?p=105015

2/5

namespace std::experimental
{
 template <typename T, typename... Args>
 struct coroutine_traits<result_holder<T>, Args...>
 {
 struct promise_type
 {
 result_holder<T> holder;

 result_holder<T> get_return_object() const noexcept
 {
 return holder;
 }

 void return_value(T const& v) const
 {
 holder.set_result(v);
 }

 void unhandled_exception() const noexcept
 {
 holder.set_exception(std::current_exception());
 }

 suspend_never initial_suspend() const noexcept
 {
 return{};
 }

 suspend_never final_suspend() const noexcept
 {
 return{};
 }
 };
 };
}

When the compiler encounters a function which contains a co_await or co_return , it

realizes that it’s dealing with a coroutine. It collects the following:

The return type of the function.

The type of *this , if it’s defined as an instance member function.

The types of the parameters, if any.

It takes all of these types and looks for a coroutine_traits specialization that matches it.

For example, given

ReturnType FreeFunction(ArgType1& arg1, ArgType2 arg2);

the compiler looks for the type

3/5

std::experimental::coroutine_traits<
 ReturnType, ArgType1&, ArgType2>

For an instance method

ReturnType SomeClass::Member(ArgType1& arg1, ArgType2 arg2) const;

the compiler looks for

std::experimental::coroutine_traits<
 ReturnType, SomeClass const&, ArgType1&, ArgType2>

In practice, few coroutines care about anything other than the return type, so you will

generally see the second and subsequent template type parameters declared but ignored.¹

The specialized coroutine_traits must have a nested type called promise_type . This

could be defined inline or it could be an alias (via typedef or using) for another type

define elsewhere.

The promise_type is the promise object that is stored inside the coroutine state. The

get_return_object() method is called to create the thing that is returned to the caller

of the coroutine. In our case, we want to return a copy of our result_holder : The

result_holder state becomes the way that the coroutine and the caller communicate

with each other:

 Coroutine state Caller

 bookkeeping

promise holder → result_holder
state

← holder

 stack frame

When the coroutine reaches its co_return , the compiler calls p.return_value() with

the returned value, which we pass onward to the holder by calling set_value . (If there is

no returned value, then the compiler uses p.return_void() .)² That will in turn update the

state, and the state will release any waiting coroutines, which resumes the caller.

On the other hand, if an exception escapes the coroutine, then the compiler will call

p.unhandled_exception() , and we deal with the exception by stowing it in the

holder . Again, this will update the state, and the state will release any waiting coroutines,

which resumes the caller. And when the caller performs an await_result to obtain the

result of the co_await , our state object rethrows the exception.

4/5

So that’s the magic of how the result of the coroutine (either a return value or an exception)

gets transferred from the coroutine back to the awaiter.

Wait, what are these last two method initial_suspend and final_suspend ? We’ll

look at those next time.

¹ You could create fancy coroutines that change their implementation depending on what the

parameters are. For example, you might define a marker type like

struct with_sugar_t {};
inline constexpr with_sugar_t with_sugar{};

and then have a special version of the result_holder coroutine promise that is used if the

coroutine function is declared as

result_holder<int> Nicely(with_sugar_t);

Okay, so I don’t have a really good motivation for this feature, but it does exist.

² It is illegal to have both return_value and return_void in a promise type, even if

one of them is removed by SFINAE:

 template<typename Dummy = void>
 std::enable_if_t<std::is_same_v<T, void>, Dummy>
 return_void() const
 {
 holder.set_result();
 }

 template<typename Dummy = void>
 std::enable_if_t<!std::is_same_v<T, void>, Dummy>
 return_value(T const& value) const
 {
 holder.set_result(value);
 }

The reason is that in order for the compiler to perform substitution in order to determine

which methods are callable, it needs to know what was passed to all of the co_return

statements, so it can try substituting them into return_value ‘s parameter and see which

ones succeed. But it hasn’t started compiling the coroutine function body yet, so it doesn’t

know what to try to substitute for value .

This is a frustrating limitation because it prevents you from writing a single promise that

covers both void -completing coroutines and value-completing coroutines. You always have

to make two types, one for return_void and another for return_value .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

