
1/6

March 31, 2021

C++ coroutines: The initial and final suspend, and
improving our return_value method

devblogs.microsoft.com/oldnewthing/20210331-00

Raymond Chen

Last time, we had a basic implementation of a promise type but left with the question of what

the initial_suspend and final_suspend are for.

When the compiler encounters a coroutine function, it performs multiple rewrite passes. One

of the early passes produces the following:

return_type MyCoroutine(args...)
{
 create coroutine state
 copy parameters to coroutine frame
 promise_type p;
 auto return_object = p.get_return_object();

 try {
 co_await p.initial_suspend(); // ¹
 coroutine function body²
 } catch (...) {
 p.unhandled_exception();
 }
 co_await p.final_suspend();
 destruct promise p
 destruct parameters in coroutine frame
 destroy coroutine state
}

This rewrite is where the initial_suspend and final_suspend enter the picture.

After constructing the promise p , it calls p.get_return_object() to obtain the object

that is passed back to the caller. Next, the coroutine awaits whatever initial_suspend()

returns.

There are two common choices for initial_suspend() : If you return a suspend_

never or some other awaiter that doesn’t suspend the coroutine, then the coroutine keeps

running until the first suspending co_await . This is the model for “hot-start” coroutines

https://devblogs.microsoft.com/oldnewthing/20210331-00/?p=105028
https://devblogs.microsoft.com/oldnewthing/20210330-00/?p=105019

2/6

which execute synchronously during their construction and don’t return an object until the

first suspension inside the function body.

On the other hand, if you return an awaiter which results in the coroutine suspending, then

the caller gets its return object right away. Nothing in the coroutine function body has

executed yet. When the caller eventually performs a co_await on the return object, the

return object resumes the coroutine.³ This is the model for “cold-start” coroutines which

don’t begin executing until they are awaited.

Conversely, there is a final_suspend at the end of the coroutine after the coroutine

function body has finished. This gives you a chance to do any extra cleanup, as well as

perform some other magic we’ll look at in a future installment.

One way to improve in our implementation of the coroutine_traits<result_holder>

promise type is our handling of return_value . First, there’s a simple improvement of

accepting the value by reference rather than value, so we can forward it into the result_

holder , thereby avoiding some extra move operations.

 void return_value(T&& v) const
 {
 holder.set_result(std::move(v));
 }

 void return_value(T const& v) const
 {
 holder.set_result(v);
 }

But there’s a bigger problem to fix: We release the waiting coroutines too soon.⁴

Consider a coroutine function that goes like this:

result_holder<int> SomethingAsync()
{
 auto guard = std::lock_guard{ mutex };
 co_return 42;
}

When this function reaches the co_return , the compiler generates a call to return_

value , and our implementation of return_value sets the result into the holder, which

immediately releases any waiting coroutines.

But those waiting coroutines might want to acquire the same mutex that the Something ‐

Async function still owns. You end up in a hurry-up-and-wait situation, where we wake up a

coroutine, only to have it block immediately.

3/6

The scenario is even more dire if we resume the waiting coroutines synchronously, because

the waiting coroutine may want to acquire the mutex, but it can’t because Something Async

still owns the mutex, and Something Async won’t resume execution until after return_

value returns, which can’t happen because it’s waiting for the resumed coroutine to reach

its next suspension point.

More generally, local variables are still alive at the point of the co_return , so any resources

held by those local variables are still active at the point of the return_value .

The solution is to break the return_value into two steps. The first step executes

immediately: Saving the value or exception into the holder . But we don’t wake up the

waiting coroutines yet. Leave them suspended for a little while longer.

After the return value or exception is captured, the local variables in the coroutine function

body are destructed when we leave the scope of the try block that wraps the coroutine

function body. Outside the try block, we perform a final_suspend , and that’s where we

can take the second step of waking the waiting coroutines.

To implement this, we need to add a few new methods to our result_holder :

4/6

struct result_holder_state
{
 ...

 void stage_result(T v)
 {
 if (kind.load(std::memory_order_relaxed)
 == result_kind::unset) {
 new (std::addressof(result.wrap))
 wrapper{ std::forward<T>(v) };
 kind.store(result_kind::value,
 std::memory_order_release);
 }
 }

 void stage_exception(std::exception_ptr ex) noexcept
 {
 if (kind.load(std::memory_order_relaxed)
 == result_kind::unset) {
 new (std::addressof(result.ex))
 std::exception_ptr{ std::move(ex) };
 kind.store(result_kind::exception,
 std::memory_order_release);
 }
 }

 void complete(node_list& list) noexcept
 {
 this->resume_all(list);
 }
};

We break the set_result into two parts: stage_result puts the result in the state, but

doesn’t resume anybody yet. The resumption of waiting coroutines happens when we call

complete .

We hook up these methods to the main result_holder class:

5/6

struct result_holder
{
 ...

 void stage_result(T result) const
 {
 this->get_state().stage_result(std::move(result));
 }

 void stage_exception(std::exception_ptr ex) const noexcept
 {
 this->get_state().stage_exception(std::move(ex));
 }

 void complete() const noexcept
 {
 this->action_impl(&state::complete);
 }
};

And we revise our promise to use these new methods:

 void return_value(T&& v) const
 {
 holder.stage_result(std::move(v));
 }

 void return_value(T const& v) const
 {
 holder.stage_result(v);
 }

 suspend_never final_suspend() const noexcept
 {
 holder.complete();
 return{};
 }

Okay, so we’ve fixed the problem of resuming the waiting coroutines too soon. There’s

another improvement we can make, but there’s another topic I want to cover first, which I’ll

do next time.

¹ The actual transformation is more complicated than described here, but the simplified

version will suffice for now. One discrepancy that is worth noting here is that an exception

that occurs when creating the initial suspend object is not caught by the try statement;

instead, it propagates synchronously out of the coroutine. However, an exception that occurs

during the co_await is indeed caught by the try statement and ends up captured into

the promise.

6/6

² If there is a function try around the entire function, the try is considered to be part of the

function body. See [dcl.fct.def.general] for the formal definition of “function body”. This

transformation of function try is performed even before the transformation described above.

³ I’m assuming of course that you provided the return object a way to resume the coroutine

when it is awaited. We’ll explore possible ways of doing this in future installments.

⁴ My thanks to Gor Nishanov for pointing out this issue to me.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

