
1/4

April 8, 2021

C++ coroutines: Awaiting the simple_task
devblogs.microsoft.com/oldnewthing/20210408-00

Raymond Chen

Last time, we accepted the parameter passed to co_return and stored it into our promise.

This time, we’ll deal with the consumption side and wait for the answer to appear.

https://devblogs.microsoft.com/oldnewthing/20210408-00/?p=105063
https://devblogs.microsoft.com/oldnewthing/20210407-00/?p=105061

2/4

 // ⟦awaiter support methods⟧ ≔

 bool client_await_ready()

 {

 assert(m_waiting == nullptr);

 return !m_holder.is_empty();

 }

 auto client_await_suspend(

 std::experimental::coroutine_handle<> handle)

 {

 auto guard = std::lock_guard{ m_mutex };

 if (!m_holder.is_empty()) return false;

 m_waiting = handle;

 return true;

 }

 T client_await_resume()

 {

 return m_holder.get_value();

 }

 auto get_awaiter() noexcept

 {

 // ⟦return an awaiter that waits for the coroutine

 // to complete⟧ ≔

 struct awaiter

 {

 simple_promise_base& self;

 bool await_ready()

 {

 return self.client_await_ready();

 }

 auto await_suspend(

 std::experimental::coroutine_handle<> handle)

 {

 return self.client_await_suspend(handle);

 }

 T await_resume()

 {

 return self.client_await_resume();

 }

 };

 return awaiter{ *this };

 }

The real work happens in the client_ methods in the simple_promise_base , and the

awaiter just forwards everything to those methods, so I’m going to talk about the awaiter and

the client_ methods as if they were the same thing.

3/4

Our awaiter’s await_ready first asserts that nobody else is waiting for promise. We allow

only one co_await because multiple co_await is not compatible with a move-only type:

If the type is move-only, then you can’t return it more than once because returning it also

gives it away. There’s nothing to return to the second co_await .

Moving the value in response to co_await also avoids potentially-expensive copies.

After the correctness check, we see if the awaited-for coroutine is still running by seeing if the

result holder is still empty. If it’s not empty, then the coroutine has already produced a result;

we return true to go straight to await_resume .

If await_ready concludes that the awaited-for coroutine is still running, then the compiler

will suspend the current coroutine and then call await_suspend . We use a mutex for this,

because we need to avoid a race between signing up for resumption and the awaited-for

coroutine reaching its final_suspend (which resumes the coroutine). We make one last

check if the awaited-for coroutine is still running, to close the race window where the

awaited-for coroutine finishes in between the await_ready and the acquisition of the lock

in await_suspend .

When the coroutine resumes, await_resume produces the value or rethrows the

exception. Note that we specify the return type explicitly as T rather than using auto . This

is important in the case where T is a reference.

The resumption occurs when the awaited-for coroutine reaches its final_suspend .

 auto final_suspend() noexcept

 {

 // ⟦return an awaiter that decrements the reference count

 // and resumes any awaiting coroutine⟧ ≔

 struct awaiter : std::experimental::suspend_always

 {

 simple_promise_base& self;

 void await_suspend(std::experimental::coroutine_handle<>) const
noexcept

 {

 std::experimental::coroutine_handle<> handle;

 {

 auto guard = std::lock_guard{ self.m_mutex };

 handle = self.m_waiting;

 }

 self.decrement_ref();

 if (handle) handle.resume();

 }

 };

 return awaiter{ {}, *this };

 }

4/4

At final suspension, we first check to see if a coroutine is actively awaiting our result. This

requires the mutex to avoid racing against the get_awaiter we saw above.

Once we capture the awaiting coroutine’s handle (if any), we decrement our own reference

count, since the coroutine is no longer running. The only reference count remaining belongs

to the simple_task . (If the caller threw away the simple_task without awaiting it,

then that decrement will destruct the coroutine state immediately.)

And then we resume the awaiting coroutine, if any. When that awaiting coroutine destructs

the simple_task , that will drop the reference count to zero and destruct the coroutine

state.

The last missing piece is the reference count management. Sadly, this is the largest single

piece of the entire coroutine infrastructure, and it’s almost entirely uninteresting! We’ll take

up the boring details next time.

Bonus chatter: It’s important that we wait until await_suspend to decrement the

reference on the promise, rather than doing it eagerly in await_ready . The await_

ready method is called while the coroutine is still in the executing state, and you cannot

destruct an executing coroutine. On the other hand, await_suspend is called after the

coroutine has transitioned to the suspended state, at which point it is now safe to destroy.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

