
1/6

April 9, 2021

C++ coroutines: Managing the reference count of the
coroutine state

devblogs.microsoft.com/oldnewthing/20210409-00

Raymond Chen

Last time, we hooked up the co_await of the simple_task and we had a brief glimpse into

the the management of the reference count on the promise (and therefore also the coroutine

state). Today we’ll fill in the rest of the story.

 // ⟦simple_promise_base reference count methods⟧ ≔

 void increment_ref() noexcept
 {
 m_refcount.fetch_add(1, std::memory_order_relaxed);
 }

 auto as_handle() noexcept
 {
 return std::experimental::coroutine_handle<Promise>::
 from_promise(*as_promise());
 }

 void decrement_ref() noexcept
 {
 auto count = m_refcount.fetch_sub(1,
 std::memory_order_release) - 1;
 if (count == 0)
 {
 std::atomic_thread_fence(std::memory_order_acquire);
 as_handle().destroy();
 }
 }

Incrementing the reference count can be done with relaxed ordering because there is no real

dependency on memory accesses. The client could equally well have accessed the fields

before or after incrementing the reference count. But decrementing it is trickier.

The client cannot access the object after decrementing the reference count, because once it

decrements the reference count, the object could disappear. This means that we have to use

release memory order on the release so that any final updates to the object are retired before

https://devblogs.microsoft.com/oldnewthing/20210409-00/?p=105065
https://devblogs.microsoft.com/oldnewthing/20210408-00/?p=105063

2/6

the object becomes eligible for destruction.

You might think that the release memory ordering is needed only when decrementing to

zero, but that’s not true. For example, the current thread might decrement to one, and

another thread decrements to zero and destroys the object. If any writes from the current

thread were delayed, they would be modifying memory after it was freed, corrupting the

heap, and creating a very bad week for a future developer who is trying to track down a rare

memory corruption bug.

If we realize that we are the one who decremented the reference count to zero, we take an

acquire memory fence to ensure that the state of the coroutine is properly suspended before

we destroy it. We don’t want to have advanced any reads of the coroutine state because those

might have occurred before the coroutine fully suspended itself.

Destroying the coroutine state uses some helper functions we haven’t seen before. Let’s go

back to our old diagram of the coroutine state:

Compiler bookkeeping ← address

Promise object ← promise*

Coroutine “stack frame”

There are three ways of referring to the coroutine state. There’s the coroutine_handle ,

which is an object that represents the coroutine state. You can convert between coroutine_

handle and a a void* , which is known as the address . And you can also convert

between coroutine_handle and the corresponding promise .

 Promise

coroutine_handle<Promise>::from_promise() ↓ ↑ handle.prom

 coroutine_handle

coroutine_handle<>::from_address() ↑ ↓ handle.addr

 void*

Converting to and from a raw address is handy when you want to pass a coroutine handle

through an ABI that uses a raw pointer, such as a thread pool callback function.

And converting to and from a promise is handy in cases like this where the promise wants to

talk about its own coroutine state, or conversely when you have a coroutine state and want to

access data stored in the promise.

3/6

The rest of the reference counting is pretty boring. The promise_ptr is just a smart

wrapper around the reference-counted raw promise pointer. Sadly, it’s also a lot of code.

4/6

 // ⟦implement promise_ptr⟧ ≔
 template<typename T>
 struct promise_ptr
 {
 using promise_t = simple_promise<T>;
 promise_t* promise;
 promise_ptr(promise_t* initial = nullptr) noexcept
 : promise(initial) {}

 promise_ptr(promise_ptr const& other) noexcept
 : promise(other.promise)
 {
 increment_promise_ref(promise);
 }
 promise_ptr(promise_ptr&& other) noexcept
 : promise(std::exchange(other.promise, nullptr))
 {
 }

 ~promise_ptr()
 {
 decrement_promise_ref(promise);
 }

 promise_ptr& operator=(promise_ptr const& other)
 {
 if (promise != other.promise)
 {
 increment_promise_ref(promise);
 decrement_promise_ref(
 std::exchange(promise, other.promise));
 }
 return *this;
 }
 promise_ptr& operator=(promise_ptr&& other) noexcept
 {
 if (promise != other.promise)
 {
 decrement_promise_ref(std::exchange(promise,
 std::exchange(other.promise, nullptr)));
 }
 return *this;
 }

 void swap(promise_ptr& other) noexcept
 {
 std::swap(promise, other.promise);
 }

 promise_t* operator->() const noexcept
 {
 return promise;

5/6

 }

 static void increment_promise_ref(
 promise_t* promise) noexcept
 {
 if (promise) promise->increment_ref();
 }

 static void decrement_promise_ref(
 promise_t* promise)
 {
 if (promise) promise->decrement_ref();
 }
 };

This is fairly straightforward stuff. There’s an amusing chain of std::exchange calls in the

rvalue assignment operator.

nullptr

↓

other.promise

↓

promise

↓

decrement_promise_
ref

The nullptr displaces the other.promise , which trickles down to promise , and the

displaced old promise goes to decrement_promise_ref for disposal.

That fills in the last of the placeholders for our simple_task . We now have a promise and

task that can be used to create new coroutines.

async_helpers::simple_task<int> Step1();
async_helpers::simple_task<int> Step2();

async_helpers::simple_task<int> CalculateAsync()
{
 auto part1 = co_await Step1();
 auto part2 = co_await Step2();
 co_return part1 + part2;
}

6/6

Next time, we’ll discuss some of the caveats with this class and how the assumed usage

pattern influenced the design.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

