
1/7

April 12, 2021

C++ coroutines: The lifetime of objects involved in the
coroutine function

devblogs.microsoft.com/oldnewthing/20210412-00

Raymond Chen

We finally hooked up the last missing piece of our coroutine promise implementation. Before

we can look at the tradeoffs we’ve made, let’s step back and follow the lifetime of the various

objects involved in the coroutine function.

Suppose we have a coroutine that goes like this:

task SomeCoroutine(Parameter p)
{
 Local1 l1;
 co_await l1.Method();
 co_return l1.Result();
}

The coroutine state will look something like this:

 Coroutine state

 bookkeeping

promise (you write this)

coroutine frame

Parameter p

Local l1

temporaries

The coroutine state consists of three parts: Compiler-defined bookkeeping to keep track of

the progress of the coroutine, the promise object (which you define), and the frame (which

contains the parameters, locals, and any temporaries).

We’ve written two kinds of promises, and they look like this:

https://devblogs.microsoft.com/oldnewthing/20210412-00/?p=105078
https://devblogs.microsoft.com/oldnewthing/20210409-00/?p=105065

2/7

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr → ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

The first kind is the simple one, where the promise object is a shared_ptr to a result_

holder object, and the result_holder holds the return value and other internal

bookkeeping. In the first kind of promise, there are two allocations, one for the coroutine

state, and one for the result_holder .

The second kind is the one where we inlined the result_holder object into the promise.

In the second kind of promise, there is just one allocation, namely for the coroutine state.

The promises consists of the result_holder itself, so there is no second allocation.

Let’s track the memory usage and object lifetimes.

When you call the coroutine, the first thing that happens it that the compiler allocates a

coroutine state and sets up some bookkeeping. In the diagrams, boxes shaded in blue contain

live data, whereas boxes in light gray represent uninitialized memory. Solid lines delimit

allocated memory, and dotted lines go around memory that has not yet been allocated.

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

At the start of the coroutine, the compiler allocates the coroutine state, but only the compiler

bookkeeping portion is live. The promise and the frame remain still uninitialized.

3/7

Next, the parameters are moved into the coroutine frame. If a parameter is a reference, then

only the reference is moved. In our example, this means that Parameter is constructed.

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

At this point, the coroutine bookkeeping and the Parameter in the coroutine state have

been initialized.

Next, the compiler constructs the promise object. In our first example, the constructor for the

promise object also constructs the shared_ptr , which creates the promise state object that

holds space for the Return Value as well as other promise bookkeeping. In our second

example, the promise state is inlined into the promise. Again, memory is reserved for the

Return Value , but nothing is in it yet.

This is what we have so far:

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr → ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

In the first example, the shared_ptr for the promise object has been initialized, and it

points to a newly-allocated result_holder . In that result_holder , the bookkeeping is

initialized, but the return value portion remains uninitialized. The return value won’t get

4/7

initialized until the coroutine exits either by reaching a co_return or by exiting with an

exception.

In the second example, the promise object is itself just a result_holder ; there is no

shared_ptr and no second allocation. Again, the bookkeeping for the result_holder

has been initialized, but the portion that holds the return value won’t get initialized until

there is something to return.

As the coroutine runs, local variables and temporaries are constructed and destructed

according to the usual rules of the C++ language. Those local variables and temporaries

appear and disappear in the frame. In our example, this means that Local gets constructed

in the frame, and then a temporary is created to hold the return value from l1.Method() .

We then go through the standard co_await machinery: From that temporary value, we

obtain an awaiter, which is another temporary value, which also goes into the frame. The

awaiter arranges for the coroutine to resume, and at the resumption, the temporaries are

destructed.

Just before the co_return , we have this:

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr → ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

In both versions of the coroutine state, the compiler bookkeeping remains initialized, as well

as the bookkeeping for the result_holder , the captured parameter, and the local

variable. In the first example, we also have a shared_ptr to the result_holder , but in

the second example, result_holder is embedded in the coroutine state, so no pointer or

second allocation is required. In the frame, the parameter remains initialized as well as the

local. The temporary is now uninitialized because the lifetime of the temporary has ended.

We now reach the co_return . The co_return ‘d value is Let’s say that the Result()

method returns a Return Value object by value. That rvalue reference to the Return Value

is passed to the promise’s return_value method. In our first example, the promise move-

constructs the Return Value in the external promise state. In our second example, the

promise move-constructs it in the embedded promise state.

5/7

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr → ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

At this point, the Return Value object in the result_holder is initialized. In the first

example, the result_holder is external to the coroutine state; in the second example, it is

embedded inside the coroutine state.

At the end of the co_return statement, the temporary Return Value is destructed. This

Return Value does not have a lifetime that extends across a suspension point, so it doesn’t

have to go into the coroutine frame. It can just go on the regular stack.

The coroutine now completes, and any remaining local variables are destructed. In this case,

it means that the Local in the coroutine frame is now destructed. The coroutine frame now

consists only of the compiler bookkeeping, the promise, and the parameters. All of the locals

and temporaries have been destructed. The memory for them is just sitting around unused.

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr → ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

The code paths diverge significally when the coroutine completes. In our first version, our

final_suspend allows the coroutine state to be destroyed. Destroying the coroutine state

destructs the promise, then the parameters, then the bookkeeping, following the usual C++

rule of destructing in reverse order of construction.

6/7

In our second version, our final_suspend keeps the coroutine state alive because the

caller has a reference to it via the task. The objects now look like this:

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr ReturnValue ReturnValue

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

In the first version, the entire coroutine state has been destroyed and deallocated, leaving

only the result_holder with the Return Value and a little bit of result holder

bookkeeping. But in the second version, the coroutine state is still allocated, with live

compiler bookkeeping, a live promise, and the live captured parameter. The live compiler

bookeeping says “This coroutine has suspended at its final_suspend . If you resume the

coroutine, it will self-destruct.”

In both cases, the result_holder (either external or embedded) is kept alive by the

task that we returned to our caller.

The caller’s co_await copies (in the first case) or moves (in the second case) the result out

of the Return Value .

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr ReturnValue (ReturnValue)

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

7/7

There is no change to the first version of our coroutine implementation, because copying the

Return Value doesn’t modify the original. But in the second version, moving the Return ‐

Value to the caller causes the Return Value inside the embedded result_holder to

become empty. It is still initialized, but it holds nothing of interest.

And finally, the caller destructs the task, which causes the last bit to disappear. In the first

case, the shared promise state destructs, which means that the result holder bookkeeping and

Return Value both destruct, and then the memory for the result_holder is freed. In the

second case, we go through coroutine state destruction, which as we noted earlier destructs

the coroutine state destructs the promise, then the parameters, then the bookkeeping.

Coroutine state Coroutine state

bookkeeping bookkeeping

shared_ptr ReturnValue (ReturnValue)

Parameter p other stuff other stuff

Local l1 Parameter p

temporaries Local l1

 temporaries

Next time, we’ll compare the two designs and identify pros and cons.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

