
1/2

April 13, 2021

C++ coroutines: Tradeoffs of making the promise be the
shared state

devblogs.microsoft.com/oldnewthing/20210413-00

Raymond Chen

Last time, we traced the lifetimes of the objects involved in the coroutine function. Now we

can look at some of the tradeoffs we’ve made in our design and see how the decisions are

intertwined.

Inlining the shared state into the promise itself has the advantage of avoiding an extra

allocation, which is significant when coroutines are being created frequently. However, it also

means that as long as there is an active task that refers to the coroutine, the entire coroutine

state will remain allocated, even though most of it is not being used.

We therefore want to discourage clients from holding onto the task after the co_await . If

the object could be co_await ed multiple times, then the task will need to be shared, and it

will probably have a long life. For example, an initialization task would probably be stored

with a long lifetime, so that every method on the object could co_await the initialization

task to ensure that initialization was complete before proceeding.

Making the object co_await able only once would discourage clients from retaining the task

after the co_await , since the object is useless after that point. Making the object

co_await able only once also allows the result to be a move-only type, since there is only

one consumer, and we can just move the result to that consumer. If the object could be

co_await ed more than once, then each consumer would have to receive a copy.

Conversely, if we want the object to be co_await able multiple times, then we should keep

the return value in a separate object and jettison the coroutine state as soon as possible in

order to destruct the coroutine parameters as well as reclaim the memory formerly occupied

by local variables and temporaries.

I find it interesting that these decisions are intertwined. Separate return object = multiply-

awaitable = long lifetime. Embedded return object = singly-awaitable = short lifetime.

https://devblogs.microsoft.com/oldnewthing/20210413-00/?p=105093
https://devblogs.microsoft.com/oldnewthing/20210412-00/?p=105078

2/2

After writing up this discussion, it occurred to me that my simple promise implementation

(which follows the embedded return object, singly-awaitable, short lifetime model) was

working too hard. I’ll simplify it next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

