
1/3

April 30, 2021

C++ coroutines: Waiting synchronously for our coroutine
to complete

devblogs.microsoft.com/oldnewthing/20210430-00

Raymond Chen

Last time, we added an extension point that permitted us to respond differently to the

completion of the coroutine. We’re going to put that extension point to good use by adding

the ability to wait synchronously for the coroutine to complete.

https://devblogs.microsoft.com/oldnewthing/20210430-00/?p=105171
https://devblogs.microsoft.com/oldnewthing/20210429-00/?p=105165

2/3

namespace async_helpers::details
{
 template<typename T>
 struct simple_task_base
 {
 ...

 T get() &&
 {
 if (!promise->client_await_ready()) {
 bool completed = false;
 if (promise->client_await_suspend(
 &completed, wake_by_address)) {
 bool ready = true;
 while (!completed) {
 WaitOnAddress(&completed, &ready,
 sizeof(completed), INFINITE);
 }
 }
 }
 return std::exchange(promise, {})->client_await_resume();
 }

 ...
 private:
 ...

 static void CALLBACK
 wake_by_address(void* completed)
 {
 reinterpret_cast<bool>(completed) = true;
 WakeByAddressSingle(completed);
 }

 };
}

To wait synchronously for the coroutine to complete, we first check if the coroutine is already

finished. If so, then we’re done, and we can skip the waiting step.

Otherwise, the coroutine is still running, so we register our suspension with a pointer and a

callback function. This time, the pointer is a pointer to a variable that we will set when the

coroutine is complete, and the callback is a function that sets that variable. In our case, we

use Wait On Address to create a synchronization object out of nothing.

If client_await_suspend returns false , then it means that the coroutine has already

completed while we were preparing to suspend, so we should skip the suspend and go

straight to the resume step.

3/3

Finally, we ask client_await_resume to obtain the completed value and return it. We

use std::exchange to cause the promise_ptr to be emptied after we get the completed

value, thereby consuming it and freeing the coroutine state.

Synchronously waiting for a coroutine is always a risky proposition because the coroutine

you’re waiting for might need to use the thread that you are waiting on. This is particularly

true if you perform the wait from a single-threaded COM apartment, because the coroutine

will probably need to get back to the original thread to continue its COM work, which it can’t

do because you’ve blocked the original thread in order to wait for the coroutine.

So don’t do that.

Next time, we’ll look at task interconvertibility.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

