
1/2

May 5, 2021

Why is coroutine_handle::resume() potentially-throwing?
devblogs.microsoft.com/oldnewthing/20210505-00

Raymond Chen

In our explorations of making co_awaitable objects, we had largely been ignoring the

possibility of the coroutine handle throwing an exception upon resume. But according to the

language specification, the resume method (and its equivalent, the operator()

overloaded function call operator) is potentially-throwing. Is this an oversight or an

intentional decision?

Well, the noop_coroutine ‘s coroutine handle does mark its resume() method as

noexcept , so it’s not like the authors of the coroutine specification simply forgot about

noexcept . They consciously put it on the resumption of a noop_coroutine , but omitted

it from other coroutines.

What’s more, if you look at libraries that operate on coroutines, all of them treat the resume

method as if it were noexcept .

What’s the deal?

Gor Nishanov explained it to me.

Allowing resume to throw was introduced in P0664R6 section 25, with this remark:

This resolution allows generator implementations to define unhandled_exception as follows:

 void unhandled_exception() { throw; }

With this implementation, if a user of the generator pulls the next value, and during
computation of the next value an exception will occur in the user authored body it will be
propagate back to the user and the coroutine will be put into a final suspend state and ready to
be destroyed when generator destructors is run.

Yeah but what does that all mean?

The scenario here is the use of coroutines as generators.

https://devblogs.microsoft.com/oldnewthing/20210505-00/?p=105186
https://devblogs.microsoft.com/oldnewthing/20191209-00/?p=103195
https://devblogs.microsoft.com/oldnewthing/20210308-00/?p=104938
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0664r6.html#25

2/2

If a generator encounters an exception, the normal mechanism would be for the exception to

be captured in the coroutine’s unhandled_exception method so that it can be re-thrown

when the caller performs an await_resume . But if the generator is synchronous (performs

no co_await operations), then it is more efficient to just let the exception propagate across

the coroutine boundary directly to the caller.

The coroutine implementation (specifically, the promise) can indicate that it wants the

exception to propagate by rethrowing the exception in unhandled_exception , rather than

capturing it.

But if you’re not in the case of a synchronous generator (and when dealing with coroutines as

tasks, you won’t be), then resume is indeed nonthrowing.

Bonus reading: Another reason for not marking resume() as noexcept is that

resume() requires that the coroutine be suspended. The presence of a precondition means

that, according to the Lakos Rule, the function should not be marked noexcept . This allows

the implementation to choose to report the precondition violation in the form of an

exception.

Raymond Chen

Follow

https://quuxplusone.github.io/blog/2018/04/25/the-lakos-rule/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

