
1/4

June 2, 2021

The ARM processor (Thumb-2), part 3: Addressing
modes

devblogs.microsoft.com/oldnewthing/20210602-00

Raymond Chen

The ARM processor employs a load-store architecture, but that doesn’t mean that it has to

skimp on the addressing modes.

Every addressing mode starts with a base register. A base register of pc, may be used only in

load instructions, and the value is rounded down to the nearest multiple of 4 before being

used in calculations. The pc-relative addressing mode is typically used to load constants that

are embedded in the code segment.

For demonstration purposes, I’ll use the LDR instruction (load 32-bit register) to illustrate

the addressing modes.

Register indirect

 ldr r0, [r1] ; r0 = *r1

Register indirect is the simplest addressing mode. The address is provided entirely by the

base register.

Register with immediate offset

 ldr r0, [r1, #imm] ; r0 = *(r1 + imm)
 ldr r0, [r1, #-imm] ; r0 = *(r1 - imm)

The offset is added to or subtracted from base register, and the result is the address to be

accessed. The offset can be in the range −255 … +4095, with small positive offsets offering

the possibility of a 16-bit encoding.

Register with register offset

 ldr r0, [r1, r2] ; r0 = *(r1 + r2)
 ldr r0, [r1, -r2] ; r0 = *(r1 - r2)

The value of the offset register is added to or subtracted from the base register to form the

effective address.

https://devblogs.microsoft.com/oldnewthing/20210602-00/?p=105271

2/4

Register with scaled register offset

 ldr r0, [r1, r2, LSL #2] ; r0 = *(r1 + (r2 << 2))
 ldr r0, [r1, -r2, ASR #1] ; r0 = *(r1 - (r2 >> 1)) signed shift

The scale is an operation performed by the barrel shifter on the offset before it is combined

with the base register. The ARM processor is very proud of its barrel shifter.

The barrel shifter can perform the following operations:

Mnemonic Meaning Range Notes

 Do nothing No scaling applied

LSL #imm Logical shift left 1 ≤ imm ≤ 31 Shift left with zero-fill

LSR #imm Logical shift right 1 ≤ imm ≤ 32 Shift right with zero-fill

ASR #imm Arithmetic shift right 1 ≤ imm ≤ 32 Shift right with sign-fill

ROR #imm Rotate right 1 ≤ imm ≤ 31 32-bit rotation

RRX Rotate right extended 1 33-bit rotation (carry is the extra bit)

Some shift operations seem to be missing, but they aren’t. Arithmetic shift left (ASL) is the

same as logical shift left, and rotate left (ROL) is the same as right rotation by 32 − #imm.

On the other hand RLX truly is missing. But then again, who cares? I have no idea who

would ever use RRX anyway.

The assembly syntax separates offset from the the scale with a comma, which looks a bit odd.

A more natural-looking syntax would be

 ldr r0, [r1, r2 lsl #2] ; r0 = *(r1 + (r2 << 2))

to emphasize that the lsl #2 is applied to r2. But the syntax is what it is, and you just have

to deal with it.

The scale you’re going to see the most often is LSL because it is what lets you convert an

index into an element offset. You use LSL #1 for a halfword index and LSL #2 for a word

index.

The RRX scale operation is very strange because it alters the carry flag as a side effect: The

bit that rotates out of the bottom bit of the offset register becomes the new carry flag.¹

3/4

The full menu of scaling is available only for word access. For byte and halfword access, the

only available scaling operation is LSL , and the maximum shift amount is #3 . For

doubleword access, no scaling is permitted.

The next level of complexity is pre-indexing and post-indexing.

Pre-indexed

If you put an exclamation point after the close-bracket, then the base register is updated to

contain the resulting effective address. This is called pre-indexed because the update occurs

before the dereference. It corresponds roughly to the C preincrement operator.

 ldr r0, [r1, #4]! ; r1 = r1 + 4
 ; r0 = *r1

 ldr r0, [r1, r2, lsl #2]! ; r1 = r1 + (r2 << 2)
 ; r0 = *r1

Post-indexed

If you put the offset and scale outside the close-bracket, then the base register is used as the

effective address, but the base register is then updated by the amount specified by the offset

and scale. This is called post-indexed because the update occurs after the dereference. It

corresponds roughly to the C postincrement operator.

 ldr r0, [r1], #4 ; r0 = *r1
 ; r1 = r1 + 4

 ldr r0, [r1], r2, lsl #2 ; r0 = *r1
 ; r1 = r1 + (r2 << 2)

If you use pre-indexing or post-indexing, then the base register cannot be the register being

loaded or stored.

Some special rules kick in if the base register is pc. First of all, you cannot use pre-indexing or

post-indexing with pc. Next, as we noted in the introduction, reading the pc register reads as

the address of the instruction plus 4. On top of that, the resulting value is then rounded down

to the nearest multiple of 4, in order to make it possible to load pc-relative words from

memory.

 ldr Rd, [pc, #offset] ; load value from code segment

This special pattern has a special assembly pseudo-instruction:

 ldr Rd, =imm32 ; load pseudo-immediate (constant stored in code
segment)

4/4

The assembler will first try to generate the constant in one instruction (which we will learn

about next time), but if that’s not possible, it will place the constant into a literal pool and

generate a pc-relative LDR instruction to load the constant from the code segment.

The disassembler understands this convention and regenerates the literal constant in the

disassembly, saving you the trouble of having to count bytes to look it up.

The assembler’s convention for saying “address of label” is to put the label inside vertical

bars, so |label| means “address of label”. This shows up a lot when using the = pseudo-

form of the LDR instruction. (I don’t think other assemblers use this notation. It appears to

be a Windows-specific convention.)

The assembler automatically emits a literal pool between subroutines, but the immediate

offset cannot reach more than about 4KB. If you have a large function, you may need to help

the assembler out by issuing the LTORG pseudo-op to tell the assembler to emit a literal pool

immediately. (Of course, you want to do this at a point where the literal pool is not at risk of

being executed as code!)

Okay, next time, we’ll look at those one-instruction constants.

¹ Unless the operation itself modifies flags, in which case the carry comes from the result of

the operation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

