
1/3

June 3, 2021

The ARM processor (Thumb-2), part 4: Single-instruction
constants

devblogs.microsoft.com/oldnewthing/20210603-00

Raymond Chen

I noted last time that ARM is very proud of its barrel shifter. We saw it being used in the

effective address calculator. Another place it makes itself known is in the calculation of

constants in a single-instruction.

First, the easy case: An unsigned 8-bit immediate, which gives you constants 0 through 255.

 movs Rd, #imm8 ; Rd = imm8 and set some flags

Only the sign flag (N) and zero flag (Z) are updated to match the value. The carry (C) and

overflow (V) flags are unaffected. This 16-bit encoding is available only for low registers.

ARM has dedicated instructions for loading constants. In classic RISC architectures, loading

constants is typically done by performing arithmetic against a hard-coded zero register:

 lda Rd, nnnn(zero) ; Alpha AXP
 addi rd, zero, nnnn ; MIPS
 addi rd, 0, nnnn ; PowerPC

ARM doesn’t have a dedicated zero register, and it doesn’t have enough encoding space for a

16-bit immediate, so it has to come up with something else.

It does it by showing off its barrel shifter.

You can take your 8-bit unsigned immediate and shift it left by up to 24 positions, thereby

allowing you to create any 32-bit constant where the span from the lowest to highest set bit is

at most 8 positions.

There are also a few special transformations:

Pattern Notes

0x000000AB Copy to positions 7:0 (nop).

https://devblogs.microsoft.com/oldnewthing/20210603-00/?p=105276
https://devblogs.microsoft.com/oldnewthing/20210602-00/?p=105271

2/3

0x00AB00AB Copy to positions 23:16 and 7:0.

0xAB00AB00 Copy to positions 31:24 and 15:8.

0xABABABAB Copy to all bytes.

These special transforms are handy for setting up a register to fill memory with a repeating

pattern. For example,

 mov r0, #0x20202020 ; ASCII spaces
 mov r0, #0x00200020 ; UTF-16 spaces
 mov r0, #0xfefefefe ; debug fill value

The naïve way of encoding these constants would be to have an 8-bit immediate and a 5-bit

shift amount (to encode shifts 0 through 24), and using shifts above 24 to encode the special

transformations, for a total encoding space of 8 + 5 = 13 bits. But Thumb-2 manages to

encode all of these constants in just 12 bits.

The trick is to realize that the 8 + 5 encoding has a lot of redundancy. The constant 4096, for

example, could be encoded eight different ways. It could be 1 << 12 , or 2 << 11 , up to

128 << 5 . The Thumb-2 encoding exploits this redundancy by requiring that the 8-bit

value being shifted have a 1 in bit 7.¹ This forces a unique representation for all of the shift

scenarios (in our case, 128 << 5), and allows bit 7 of the constant to be used to help encode

the shift amount.

Related reading: How did real-mode Windows patch up return addresses to discarded

code segments? Another example of squeezing ten pounds of flour into a five-pound bag.

 mov Rd, #imm12 ; Rd = decode(imm12)
 movs Rd, #imm12 ; Rd = decode(imm12), set some flags

If you ask for flags to be updated, then the sign flag (N) and zero flag (Z) are updated to

match the generated constant. The overflow (V) flag is unchanged, and the carry (C) flag is

updated in a complicated way you probably don’t care about.²

But wait, we’re not done with generating constants:

 mvn Rd, #imm12 ; Rd = ~decode(imm12)
 mvns Rd, #imm12 ; Rd = ~decode(imm12), set some flags

In addition to all of the special constants that can be generated with MOV , you can use the

MVN instruction to generate the bitwise NOT of them all.³

The MVN is commonly used to generate small negative numbers:

 mvn Rd, #0 ; Rd = -1
 mvn Rd, #1 ; Rd = -2

https://devblogs.microsoft.com/oldnewthing/20120629-00/?p=7253

3/3

But wait, we’re still not done yet!

 mov Rd, #imm16 ; Rd = imm16

There is also a special encoding that loads a 16-bit unsigned value.

As we saw last time, if you’re writing assembly by hand, you can just write LDR Rd, =#nnn

and the assembler will figure out which MOV , MVN , or (worst case) LDR instruction will get

you the value you want. It will disassemble as MOV , MVN , or LDR based on what the

assembler ultimately chose.

Finally, there’s another constant-generating function for replacing the upper 16 bits of a

register:

 ; move top
 movt Rd, #imm16 ; Rd[31:16] = imm16
 ; Rd[15: 0] unchanged

The upper 16 bits of the destination register are replaced by the 16-bit immediate, and the

lower 16 bits are left unchanged. This instruction is usually paired with the #imm16 version

of the MOV instruction:

 mov Rd, #efgh
 movt Rd, #abcd ; Rd = abcdefgh

Of all these ways of generating constants, the #imm12 constants can also be used as

immediate arguments to arithmetic operations. We’ll start looking at those arithmetic

operations next.

¹ This means that you cannot use the shift-encoding format for constants less than 128. But

that’s okay, because those constants can use the “nop” transformation.

² It’s an artifact of the way the constant is generated internally: If you request a special

transformation (or no transformation), then the carry flag is unchanged. If you request a

shift, it is internally treated as a rotate right of the unshifted value, and the carry flag

consequently matches the high bit of the result.

³ If you request flags to be updated, then the sign and zero flags reflect the result after

bitwise negation, but the carry flag reflects the result before bitwise negation.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

