
1/4

June 7, 2021

The ARM processor (Thumb-2), part 6: The lie hiding
inside the CMN instruction

devblogs.microsoft.com/oldnewthing/20210607-00

Raymond Chen

Last time, we learned that the CMN instruction stands for compare negative, and it compares

its first argument with the negative of the second argument:

 ; compare negative (compare Rn with -op2)
 cmn Rn, op2 ; Set flags for Rn + op2

We noted that the N in the name is misleading, because it stands for negative, even though

in the seemingly-analogous MVN instruction, the N stands for not.

But that’s not the most misleading part of the CMN instruction.

The big lie about the compare negative instruction is that it doesn’t even compare the

negative.

You had one job!

The compare negative instruction is defined in terms of addition, rather than subtraction of

the negative. Mathematically, the operations are identical: Subtracting a negative is the same

as adding the positive.

But computers aren’t operating on mathematical integers.

Let’s look more closely at the difference between subtraction of the negative and addition of

the positive. Recall that subtraction in a true-carry system is rewritten as addition, using the

identity -x = ~x + 1 . Therefore, a - b becomes a + ~b + 1 . And the carry for this

operation is the combined carry from both additions.

On the other hand, the CMN instruction is implemented as a straight addition, not a

subtraction of the negative.

Expression Evaluated as

https://devblogs.microsoft.com/oldnewthing/20210607-00/?p=105288
https://devblogs.microsoft.com/oldnewthing/20210604-00/?p=105280

2/4

a - (-b) let c = ~b + 1
 result = a + ~c + 1

a + b result = a + b

One difference between the two is that in the “subtract the negative” version, the carry that

occurs in the calculation of ~c + 1 contributes to the final carry, whereas that extra carry

disappears in the “add the positive” version.

When would ~c + 1 generate a carry?

Answer: When c is zero, because we have ~c + 1 = ~0 + 1 = 0xFFFFFFFF + 1 , and

that sum generates a carry. And c is zero when b is zero.

On the other hand, if b is zero, then a + b never generates a carry because you’re just

adding zero, which does nothing.

Conclusion: If the second parameter to CMN is zero, then CMN results in no carry, even

though “subtracting the negative of zero” would have produced a carry.

In other words, these two sequences do not generate the same flags:

 ; compare r0 against negative r1 using single instruction
 cmn r0, r1 ; set flags for (r0 + r1)

 ; compare r0 against negative r1 using two instructions
 rsb r12, r1, #0 ; r12 = negative r1
 cmp r0, r12 ; set flags for (r0 - r12)

In the case where r1 is zero, the first version clears carry, but the second version sets carry.

This means that if you follow the CMN with a conditional branch that consumes carry, you

will get the wrong answer if the second parameter happens to be zero.

We haven’t learned about ARM conditionals yet, but when we do, you’ll discover that it is the

unsigned relative comparison conditionals¹ that are based on the carry flag. Therefore, don’t

use the CMN instruction to make unsigned relative comparisons against values which might

be zero, because the carry flag may be set incorrectly.

Fortunately, this problem is relatively easy to avoid:

First rule: Don’t use

 cmn Rd, #0

Don’t hard-code zero as the second parameter because the carry won’t be set properly.² Just

write it as the positive comparison:

3/4

 cmp Rd, #0

This is even easier to write, and it doesn’t have the carry flag problem.

Second rule: If you use a register or shifted register as the second parameter to CMN , don’t

follow it with a condition that relies on the carry flag. In practice, this means that you should

use signed conditions to test the result rather than unsigned conditions. (We haven’t learned

about conditions yet.)

Fortunately, this second rule is not that much of a problem, because the fact that you are

“comparing against the negative” strongly implies that you are interpreting the comparison

as between two signed integers, so you are unlikely to follow up with an unsigned relative

comparison conditional.

Okay, so that takes care of carry. The other troublesome bit is the overflow bit, which is just

the carry from bit 30 into 31.

What are the cases in which a carry from bit 30 to bit 31 would be lost? We already identified

zero as one of those cases. The other case is where the value is 0x80000000 .

Ah, the curse of the most negative integer.

Ignoring the overflow from bit 30 to bit 31 means that the negative of 0x80000000 is

treated as the positive number +0x80000000 . Since every two’s complement 32-bit integer

is less than +0x80000000 (viewed as a large positive number), the result of the comparison

is pretty much foregone. It will always say “less than”.

In a way, though, the curse of the most negative integer isn’t so much of a problem here.

After all, you did ask to compare against the negative of the most negative integer, and that’s

a positive number that’s so positive it can’t even be represented!

Wow, what a complicated, messed-up instruction CMN turned out to be.

Next time, we’ll return to our exploration of the ARM Thumb-2 instruction set by looking at

bitwise operations.

¹ The unsigned relative comparison conditionals are “unsigned less than”, “unsigned less

than or equal”, “unsigned greater than”, and “unsigned greater than or equal”.

² Note that everything is fine if the second argument is not zero.

 ; compare against 0xFFFFFFFE.
 ; this works properly even for unsigned comparison.
 cmn r1, #2

4/4

The problematic case for unsigned comparisons occurs only when the second argument is

zero.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

