
1/3

June 9, 2021

The ARM processor (Thumb-2), part 8: Bit shifting and
bitfield access

devblogs.microsoft.com/oldnewthing/20210609-00

Raymond Chen

The ARM processor shows off its barrel shifter once again in its collection of bit shifting

instructions.

 ; logical shift right
 lsr Rd, Rn, #imm5 ; Rd = Rn >> imm5 (unsigned)
 lsr Rd, Rn, Rm ; Rd = Rn >> (Rm & 0xFF) (unsigned)

 ; arithmetic shift right
 asr Rd, Rn, #imm5 ; Rd = Rn >> imm5 (signed)
 asr Rd, Rn, Rm ; Rd = Rn >> (Rm & 0xFF) (signed)

 ; logical shift left
 lsl Rd, Rn, #imm5 ; Rd = Rn << imm5
 lsl Rd, Rn, Rm ; Rd = Rn << (Rm & 0xFF)

 ; rotate right
 ror Rd, Rn, #imm5 ; Rd = rotate_right(Rn, imm5)
 ror Rd, Rn, Rm ; Rd = rotate_right(Rn, Rm & 0xFF)

 ; rotate right extended
 rrx Rd, Rn ; temp = Rn
 ; Rd = (carry << 31) | (temp >> 1)
 ; carry = temp & 1

 ; all support the S suffix

For register-counted shifts, only the bottom byte of the shift amount is used. The “rotate right

extended” instruction performs a 33-bit rotation, where the carry bit is the extra bit.

If flags are updated, then the negative (N) and zero (Z) flags reflect the resulting value. The

carry (C) flag contains the last bit shifted out. and the overflow (V) flag is unchanged. If the

shift amount is zero, then carry is unchanged.

There is no RLX instruction for rotating left through carry, but that’s okay, because you can

emulate it:

https://devblogs.microsoft.com/oldnewthing/20210609-00/?p=105293

2/3

 adcs Rd, Rn, Rn ; Rd = Rn + Rn + carry, set carry on overflow

Adding a number to itself is the same as shifting left one position. Adding with carry puts the

former carry bit into bit 0 of the result. And setting flags on carry-out means that the

previous bit 31 becomes the new carry bit. Voilà: Rotate left through carry.

Note that for the shift instructions, the shift amount cannot itself be a shifted register. The

barrel shifter is already being used by the primary opcode; it can’t be used to generate the

shift amount, too.

There are also some instructions specifically for manipulating bitfields.

 ; bitfield clear: zero out #w bits starting at #lsb
 bfc Rd, #lsb, #w ; Rd[lsb+w-1:lsb] = 0

 ; bitfield insert: replace #w bits in starting at #lsb
 ; with least significant bits of source
 bfi Rd, Rn, #lsb, #w ; Rd[lsb+w-1:lsb] = Rn[w-1:0]

 ; unsigned bitfield extract
 ubfx Rd, Rn, #lsb, #w ; Rd = Rn[lsb+w-1:lsb], zero-extended

 ; signed bitfield extract
 sbfx Rd, Rn, #lsb, #w ; Rd = Rn[lsb+w-1:lsb], sign-extended

Suppose you have a C structure like this:

struct S
{
 int x:10;
 int y:12;
 unsigned int z:10;
};

which might correspond to

9 8 7 6 5 4 3 2 1 0

z y x

Suppose the bitfield is held in register r0 and the variable v is in the register r1. The bitfield

instructions would correspond to these C statements:

 bfc r0, #10, #12 ; s.y = 0

 bfi r0, r1, #10, #12 ; s.y = v

 ubfx r1, r0, #22, #10 ; v = s.z
 sbfx r1, r0, #10, #12 ; v = s.y

3/3

The “bitfield clear” instruction sets a range of bits to zero. The “bitfield insert” instruction

copies the specific number of least significant bits of the source to a position in the

destination. The bitfield extraction instructions copy the specific bits from the source to the

least significant bits of the destination, and either zero-extends or sign-extends the result.

The bitfield clear instruction can also be used for things other than bitfields, For example,

you can write

 bfc r0, r0, #14, #18 ; r0 = r0 & 0x0003FFFF

You would be tempted to write something like

 and r0, r0, #0x0003FFFF ; not a valid instruction

but if you try, the assembler will get mad at you because the constant 0x0003FFFF cannot

be encoded. There are too many 1-bits for it to be encoded as a shifted 8-bit value, and there

are too many 0-bits for it to be encoded as the inverse of a shifted 8-bit value.

The signed bit field extraction instruction is useful for sign-extending a sub-word value in a

single instruction:

 sbfx r0, r0, #0, #12 ; sign extend a 12-bit value

 ; alternative version would have been
 lsl r0, r0, #20 ; r0 = r0 << 20
 asr r0, r0, #20 ; r0 = r0 >> 20 (signed)

The bitfield instructions use a 32-bit encoding. While you could use them to sign-extend or

zero-extend a byte or halfword, there are dedicated 16-bit instructions for those operations.

We’ll look at those next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

