
1/3

June 10, 2021

The ARM processor (Thumb-2), part 9: Sign and zero
extension

devblogs.microsoft.com/oldnewthing/20210610-00

Raymond Chen

I noted last time that you could use the bitfield extraction instructions to do zero- and sign-

extension of bytes and halfwords to words. But there are dedicated instructions for these

operations which have smaller encodings if the source and destination registers are low.

 ; unsigned extend byte to word
 uxtb Rd, Rm ; Rd = (uint8_t)Rm

 ; signed extend byte to word
 sxtb Rd, Rm ; Rd = (int8_t)Rm

 ; unsigned extend halfword to word
 uxth Rd, Rm ; Rd = (uint16_t)Rm

 ; signed extend halfword to word
 sxth Rd, Rm ; Rd = (int16_t)Rm

You can optionally apply a rotation to the second register so that you can extract a 8-bit or

16-bit value that sits along a byte boundary.

 ; unsigned/signed extend byte to word with rotation
 ; rotation must be a multiple of 8
 uxtb Rd, Rm, #rot ; Rd = (uint8_t)(Rm ROR #rot)
 sxtb Rd, Rm, #rot ; Rd = (int8_t)(Rm ROR #rot)

 ; unsigned/signed extend halfword to word with rotation
 ; rotation must be a multiple of 8
 uxth Rd, Rm, #rot ; Rd = (uint16_t)(Rm ROR #rot)
 sxth Rd, Rm, #rot ; Rd = (int16_t)(Rm ROR #rot)

It’s kind of weird to apply a 24-bit rotation to extract a halfword, but you can do it if you want

to.

You can also zero-extend or sign-extend a word to a doubleword using instructions you

already have available:

https://devblogs.microsoft.com/oldnewthing/20210610-00/?p=105295
https://devblogs.microsoft.com/oldnewthing/20210609-00/?p=105293

2/3

 ; zero-extend Rd to Rd/R(d+1)
 mov R(d+1), #0 ; set to 0

 ; sign-extend Rd to Rd/R(d+1)
 asrs R(d+1), Rd, #31 ; copy sign bit to all bits

The trick is that a signed right-shift by 31 positions ends up filling the entire word with the

sign bit. We use the S-version ASRS because it allows a compact 16-bit encoding if both the

source and destination registers are low.

The ASR #31 trick can also be used in the op2 of arithmetic or logical instructions.

 ; set r0 to zero if r1 is positive or zero
 and r0, r1, ASR #31

The trick here is that r1, ASR #31 produces 0xFFFFFFFF if r1 is negative, but

0x00000000 if r1 is positive or zero.

In addition to the straight zero- and sign-extension operations, there are other instructions

that combine the extension with another operation. Most of them are focused on multimedia

scenarios, but the extend-and-add instructions are more general-purpose, and I have seen

the compiler generate the versions with no rotation.

 ; zero/sign extend and add byte with optional rotation
 ; rotation must be a multiple of 8
 uxtab Rd, Rn, #rot ; Rd = Rd + (uint8_t)(Rn ROR #rot)
 sxtab Rd, Rn, #rot ; Rd = Rd + (int8_t)(Rn ROR #rot)

 ; zero/sign extend and add halfword with optional rotation
 ; rotation must be a multiple of 8
 sxtah Rd, Rn, #rot ; Rd = Rd + (int16_t)(Rn ROR #rot)
 uxtah Rd, Rn, #rot ; Rd = Rd + (uint16_t)(Rn ROR #rot)

There’s another instruction that looks like it’d come in handy, particularly in Win32 user

interface code that has to pack two 16-bit coordinates into a 32-bit integer, but I haven’t seen

any compiler generate it:

 ; pack halfword bottom-and-top, or top-and-bottom
 ; shift is optional
 pkhbt Rd, Rn, Rm, LSL #imm ; Rd = ((Rm LSL #imm) << 16) | (uint16_t)Rn
 pkhtb Rd, Rn, Rm, ASR #imm ; Rd = (Rn << 16) | (uint16_t)(Rm ASR #imm)

The bottom-and-top version puts the first input register in the bottom part of the output, and

the second input parameter goes into the top part. The top-and-bottom version does it the

other way. (The top-and-bottom instruction is not redundant because the barrel shifter can

be applied only to the second input parameter.)

When the compiler needs to do this, it generates two instructions:

3/3

 ; pack halfword bottom-and-top
 uxth r12, Rn ; r12 = (uint16_t)Rn
 orr Rd, r12, Rm, LSL #16 ; Rd = r12 | (Rm << 16)
 ; = (uint16_t)Rn | (Rm << 16)

Even if it didn’t want to use PKHBT , it could have used BFI to pack the values in a single

instruction:

 ; pack halfword bottom-and-top (in place)
 bfi Rd, Rm, #16, #16 ; Rd[31:16] = Rm[15:0]

Maybe there’s some dirty secret about the PKHBT and BFI instructions that the compiler

knows but I don’t.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

