
1/3

June 10, 2021

The ARM processor (Thumb-2), part 9: Sign and zero
extension

devblogs.microsoft.com/oldnewthing/20210610-00

Raymond Chen

I noted last time that you could use the bitfield extraction instructions to do zero- and sign-

extension of bytes and halfwords to words. But there are dedicated instructions for these

operations which have smaller encodings if the source and destination registers are low.

   ; unsigned extend byte to word 
   uxtb    Rd, Rm      ; Rd = (uint8_t)Rm 

   ; signed extend byte to word 
   sxtb    Rd, Rm      ; Rd = (int8_t)Rm 

   ; unsigned extend halfword to word 
   uxth    Rd, Rm      ; Rd = (uint16_t)Rm 

   ; signed extend halfword to word 
   sxth    Rd, Rm      ; Rd = (int16_t)Rm 

You can optionally apply a rotation to the second register so that you can extract a 8-bit or

16-bit value that sits along a byte boundary.

   ; unsigned/signed extend byte to word with rotation 
   ; rotation must be a multiple of 8 
   uxtb    Rd, Rm, #rot ; Rd = (uint8_t)(Rm ROR #rot) 
   sxtb    Rd, Rm, #rot ; Rd = ( int8_t)(Rm ROR #rot) 

   ; unsigned/signed extend halfword to word with rotation 
   ; rotation must be a multiple of 8 
   uxth    Rd, Rm, #rot ; Rd = (uint16_t)(Rm ROR #rot) 
   sxth    Rd, Rm, #rot ; Rd = ( int16_t)(Rm ROR #rot) 

It’s kind of weird to apply a 24-bit rotation to extract a halfword, but you can do it if you want

to.

You can also zero-extend or sign-extend a word to a doubleword using instructions you

already have available:
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   ; zero-extend Rd to Rd/R(d+1) 
   mov     R(d+1), #0          ; set to 0 

   ; sign-extend Rd to Rd/R(d+1) 
   asrs    R(d+1), Rd, #31     ; copy sign bit to all bits 

The trick is that a signed right-shift by 31 positions ends up filling the entire word with the

sign bit. We use the S-version ASRS  because it allows a compact 16-bit encoding if both the

source and destination registers are low.

The ASR #31  trick can also be used in the op2  of arithmetic or logical instructions.

   ; set r0 to zero if r1 is positive or zero 
   and     r0, r1, ASR #31 

The trick here is that r1, ASR #31  produces 0xFFFFFFFF  if r1 is negative, but

0x00000000  if r1 is positive or zero.

In addition to the straight zero- and sign-extension operations, there are other instructions

that combine the extension with another operation. Most of them are focused on multimedia

scenarios, but the extend-and-add instructions are more general-purpose, and I have seen

the compiler generate the versions with no rotation.

   ; zero/sign extend and add byte with optional rotation 
   ; rotation must be a multiple of 8 
   uxtab   Rd, Rn, #rot        ; Rd = Rd + (uint8_t)(Rn ROR #rot) 
   sxtab   Rd, Rn, #rot        ; Rd = Rd + ( int8_t)(Rn ROR #rot) 

   ; zero/sign extend and add halfword with optional rotation 
   ; rotation must be a multiple of 8 
   sxtah   Rd, Rn, #rot        ; Rd = Rd + ( int16_t)(Rn ROR #rot) 
   uxtah   Rd, Rn, #rot        ; Rd = Rd + (uint16_t)(Rn ROR #rot) 

There’s another instruction that looks like it’d come in handy, particularly in Win32 user

interface code that has to pack two 16-bit coordinates into a 32-bit integer, but I haven’t seen

any compiler generate it:

   ; pack halfword bottom-and-top, or top-and-bottom 
   ; shift is optional 
   pkhbt   Rd, Rn, Rm, LSL #imm ; Rd = ((Rm LSL #imm) << 16) | (uint16_t)Rn 
   pkhtb   Rd, Rn, Rm, ASR #imm ; Rd = (Rn << 16) | (uint16_t)(Rm ASR #imm) 

The bottom-and-top version puts the first input register in the bottom part of the output, and

the second input parameter goes into the top part. The top-and-bottom version does it the

other way. (The top-and-bottom instruction is not redundant because the barrel shifter can

be applied only to the second input parameter.)

When the compiler needs to do this, it generates two instructions:
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   ; pack halfword bottom-and-top 
   uxth    r12, Rn                 ; r12 = (uint16_t)Rn 
   orr     Rd, r12, Rm, LSL #16    ; Rd = r12 | (Rm << 16) 
                                   ;    = (uint16_t)Rn | (Rm << 16) 

Even if it didn’t want to use PKHBT , it could have used BFI  to pack the values in a single

instruction:

   ; pack halfword bottom-and-top (in place) 
   bfi     Rd, Rm, #16, #16        ; Rd[31:16] = Rm[15:0] 

Maybe there’s some dirty secret about the PKHBT  and BFI  instructions that the compiler

knows but I don’t.
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