
1/5

June 11, 2021

The ARM processor (Thumb-2), part 10: Memory access
and alignment

devblogs.microsoft.com/oldnewthing/20210611-00

Raymond Chen

Accessing memory is done primarily through load and store instructions.

 LDR Rd, [...] ; load word
 STR Rd, [...] ; store word

 LDRD Rd, Rd2, [...] ; load doubleword into Rd and Rd2
 LDRH Rd, [...] ; load halfword, zero-extended
 LDRSH Rd, [...] ; load halfword, sign-extended
 LDRB Rd, [...] ; load byte, zero-extended
 LDRSB Rd, [...] ; load byte, sign-extended

 STRD Rd, Rd2, [...] ; store doubleword from Rd and Rd2
 STRH Rd, [...] ; store halfword
 STRB Rd, [...] ; store byte

You cannot have multiple updates to a register, and you cannot modify the register being

stored.

 LDR r0, [r0, #8]! ; illegal: modifies r0 twice
 STR r0, [r0, #8]! ; illegal: modifies r0 while it is being stored
 LDRD r0, r0, [r1] ; illegal: modifies r0 twice

The doubleword load and store instructions require doubleword alignment of the effective

address and do not support register-plus-register addressing modes.¹

Misaligned memory accesses normally generate an alignment exception that traps into the

kernel, which typically emulates the memory operation before returning back to user mode.

Of course, trapping into kernel mode is going to be a lot slower than dealing with the

misalignment in the code, so the trap is really just a backstop and shouldn’t be your primary

means of dealing with misaligned data.

The ARM architecture permits the operating system to put alignment enforcement into a

relaxed mode, which Windows does. When alignment enforcement is relaxed, then

misaligned reads and writes of a single word or halfword are fixed up automatically in the

https://devblogs.microsoft.com/oldnewthing/20210611-00/?p=105299

2/5

processor without generating an exception. Note, however, that the fixed-up memory

operation is not atomic: You can get torn reads or writes if the memory is being accessed by

another device at the same time.

I noted above that relaxed enforcement of alignment kicks in only for single words or

halfwords. One source of multi-word memory access is the LDRD and STRD instructions

which store a pair of registers. There are also instructions specifically designed for reading

and writing multiple registers:

 ; load multiple registers starting at Rn
 ldm Rn, { registers }

 ; load multiple registers starting at Rn
 ; and update Rn
 ldm Rn!, { registers }

 ; store multiple registers ending at Rn
 stm Rn, { registers }

 ; store multiple registers ending at Rn
 ; and update Rn
 stm Rn!, { registers }

The load/store multiple instructions let you load or store multiple registers to a block of

memory starting at Rn. The registers are stored with the lowest-numbered register at the

lowest address, and subsequent registers in adjacent memory locations.

When loading, you can load any register except sp. When storing, you cannot store pc or sp.

The updating versions allow you to treat Rn as a stack pointer: When storing, the registers

are stored below the address in the base register, and then the base register is decremented

past the written-to bytes. When loading, the registers are loaded from the address in the base

register, and then the base register is incremented past the read-from bytes.² In the updating

versions, the base register may not be among the registers being loaded or stored.

The list of registers must have at least two entries. There’s no point to loading or storing zero

registers, and if you wanted only one register, you could have used a regular load or store

instruction. (For the updating versions, you can use a pre-indexed store and a post-indexed

load.) As a courtesy, the assembler accepts LDM and STM with a single register and

automatically converts it into the corresponding LDR or STR instruction for you.

There are dedicated PUSH and POP instructions for the common case where sp is the base

register.

3/5

 ; push multiple registers
 push { registers } ; stm sp!, { registers }

 ; pop multiple registers
 pop { registers } ; ldm sp!, { registers }

For some reason, there is a separate 32-bit encoding for the case of pushing or popping a

single register, even though it could have been done with a pre-indexed store (push single

register) or post-indexed load (pop single register). I’m guessing that this is a case of

offloading work to the compiler: Having a dedicated instruction for a common special case

makes it easier to recognize in the CPU.

The CPU itself provides a compact 16-bit encoding for the case where all of the registers

being pushed or popped are low.

You cannot pop the sp register, because that would create two writes to the sp register in a

single instruction, one from the pop and one from incrementing the sp register. (Technically,

the processor lets you do it, but the resulting value in sp is architecturally unpredictable.)

I noted some time ago that anybody who writes #pragma pack(1) may as well just wear a

sign on their forehead that says “I hate RISC”. You can see this happening on ARM when it

wants to perform block copies.

struct S
{
 int a, b, c, d;
};

// aligned copy
S* p = ...; // assume in register r0
S* q = ...; // assume in register r1
*p = *q;

 ; copy four words using multi-register load/store
 ldm r1, {r2-r5}
 stm r0, {r2-r5}

Since the structure is 4-byte aligned, the memory can be copied in two instructions by using

the multi-word load and store instructions.

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290

4/5

// unaligned copy
__unaligned S* p = ...; // assume in register r0
__unaligned S* q = ...; // assume in register r1
*p = *q;

 ; copy four words one at a time
 ldr r2, [r1]
 str r2, [r0]
 ldr r2, [r1, #4]
 str r2, [r0, #4]
 ldr r2, [r1, #8]
 str r2, [r0, #8]
 ldr r2, [r1, #12]
 str r2, [r0, #12]

If the structure is unaligned, then the compiler cannot use the multi-word load and store

instructions, because they will trap if the pointers are misaligned. Instead, the values have to

be copied one word at a time.

So those are the regular load/store instructions. Next time, we’ll look at the instructions for

atomic memory access.

¹ In classic ARM, Rd must be even, and Rd2 must be one greater than Rd. Thumb-2 removes

this restriction and lets you target any pair of registers. (Well, almost any pair. Some

registers are disallowed, like sp and pc.)

² In classic ARM, there are eight versions of the updating multi-word instructions:

LD M I B

ST D A

You can choose to load (LD) or store (ST), you can choose whether the base register is

incremented (I) or decremented (D), and you can choose whether the effective address

adjustment occurs before (B) or after (A) the memory is accessed.

Classic ARM also provides alternate mnemonics for these operations based not on what the

instruction literally does, but rather describing the usage pattern.

Opcode Meaning Equivalent to

STMFD
 LDMFD

Full Descending STMDB
 LDMIA

STMED
 LDMED

Empty Descending STMDA
 LDMIB

5/5

STMFA
 LDMFA

Full Ascending STMIB
 LDMDA

STMEA
 LDMEA

Empty Ascending STMIA
 LDMDB

The “Descending” version is for managing a stack that grows downward, and the “Ascending”

version grows upward.

The “Full” version has the register pointing to the item most recently stored on the stack, and

the “Empty” version has the register pointing to the place where the next item would go.

In practice, nearly everyone uses Full Descending (STMDB and LDMIA), and Thumb-2

abandoned the other variations. Note that the underlying semantics are still available for

single-register loads and stores in Thumb-2. You just lose the ability to do multi-register

operations.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

