
1/4

June 15, 2021

The ARM processor (Thumb-2), part 12: Control transfer
devblogs.microsoft.com/oldnewthing/20210615-00

Raymond Chen

The most basic control transfer is a direct relative branch.

 b label ; unconditional branch

The reach of the relative branch is around ±16MB, with a compact 16-bit encoding available

for branch targets within 2KB.

The relative branch instruction can be conditionalized on the status flags:

Condition Meaning Evaluation Notes

EQ equal Z = 1

NE not equal Z = 0

CS carry set C = 1

HS high or same unsigned greater than or equal

CC carry clear C = 0

LO low unsigned less than

MI minus N = 1 signed negative

PL plus N = 0 signed positive or zero

VS overflow set V = 1 signed overflow

VC overflow clear V = 0 no signed overflow

HI high C = 1 and Z = 0 unsigned greater than

LS low or same C = 0 or Z = 1 unsigned less than or equal

GE greater than or equal N = V signed greater than or equal

https://devblogs.microsoft.com/oldnewthing/20210615-00/?p=105311

2/4

LT less than N ≠ V signed less than

GT greater than Z = 0 and N = V signed greater than

LE less than or equal Z = 1 or N ≠ V signed less than

AL always always true unconditional

The conditions come in pairs (aside from AL), and toggling the bottom bit negates the

condition. For 16-bit conditional branch encoding, this maps to the bottom bit of the first

byte of the instruction. For 32-bit conditional branch encoding, you toggle 0x40 in the

second byte of the instruction.

The conditions are named after the behavior that is expected if they come directly after a

CMP instruction. For example, a BEQ instruction that comes directly after a CMP is a

conditional branch that is taken if the comparison was between two equal values.

Four bits of instruction encoding space are lost to encode the condition, so it can reach only

1/16th as far as the unconditional branch: About ±254 bytes for the 16-bit encoding and

about ±1MB for the 32-bit encoding.

There are special conditional branch instructions for testing whether a register is zero.

 cbz Rn, label ; branch if Rn == 0
 cbnz Rn, label ; branch if Rn != 0

These are 16-bit instructions which are available only for low registers, and they are capable

only of branching forward by up to 126 bytes.¹

Subroutine calls are performed by branching to the first instruction of the subroutine and

putting the return address in the lr register. This should feel familiar, for all of the other non-

x86 processors we’ve reviewed perform subroutine linkage the same way.

 ; branch and link, stay in Thumb-2
 bl label ; lr = next instruction + 1
 ; execution resumes at label

 ; branch and link with exchange, switch to classic ARM
 blx label ; lr = next instruction + 1
 ; execution resumes at label

These instructions have a reach of approximately ±16MB.

Windows uses Thumb-2 exclusively, so you won’t see the blx instruction used in this way.

The X stands for “exchange”, which means that it swaps between Thumb-2 and classic ARM

modes.²

3/4

The return address is stored in lr, but with the bottom bit set. There’s a reason for this.

Thumb-2 instructions must be halfword-aligned, and classic ARM instructions must be

word-aligned. Therefore, the bottom bit of any code address is known to be zero, so the

processor uses it to encode the target instruction set: If the bottom bit is clear, then execution

resumes in classic ARM; if the bottom bit is set, then execution resumes in Thumb-2.

Switching dynamically between classic ARM and Thumb-2 instruction sets is known as

interworking.

Windows uses Thumb-2 exclusively, and the convention is that the bottom bit of function

pointers is always set. When you look at function pointers in the debugger, they will always

be one larger than the address itself.

 ; branch with exchange
 bx Rn ; switch to classic ARM if Rn is even
 ; execution resumes at Rn & ~1

 ; branch and link with exchange
 blx Rn ; lr = next instruction + 1
 ; switch to classic ARM if Rn is even
 ; execution resumes at Rn & ~1

Even though the X instructions can switch to classic ARM, that switching feature is never

used in Windows. Function pointers always have the bottom bit set, so the destination of the

BLX is always Thumb-2.

The last branch instruction is the table-based branch:

 ; table branch byte
 tbb [Rn, Rm] ; jump to pc + 2 * (byte at Rn + Rm)

 ; table branch halfword
 tbh [Rn, Rm, lsl #1] ; jump to pc + 2 * (halfword at Rn + Rm * 2)

The base register points to the start of a jump table, and the second register is a byte or word

index into the table. The value read from the table is then treated as a forward relative branch

offset in units of halfwords.

Remember that pc has moved ahead four bytes when the instruction executes, so the forward

branch is relative to the next instruction, not to the TBB or TBH instruction.

Since the offsets are stored in an unsigned byte or halfword, the reach of TBB instruction is

514 bytes, and the reach of of the TBH instruction is around 128KB.

One thing you might notice is that, if you assume that the bottom bit of the register is set,

these two instructions are equivalent:

4/4

 bx Rn ; jump to Rn
 mov pc, Rn ; jump to Rn

The second version takes advantage of the fact that storing a value into the pc register acts as

a control transfer. In practice, you won’t see the MOV version because it takes a 32-bit

encoding, whereas BX uses a 16-bit encoding.

Nevertheless, other variations of loading a value into pc are still useful:

 mov pc, [r0,#4] ; jump to address
 pop {pc} ; pop return address and jump there

Popping a value into the instruction pointer is a common pattern. On entry to a function, you

push the registers you need to preserve across the call, and on exit you pop them off. The two

sets of registers line up, so that everything pops back to the original source register, except

that you pop the old lr into pc, so that the pop instruction is a combination “pop registers

from the stack” and “return to caller” instruction.

 ; save a bunch of registers, and the return address
 push {r3-r6,r11,lr}

 ...

 ; restore the registers, except that the return
 ; address goes into pc, thereby jumping there
 pop {r3-r6,r11,pc}

Next time, we’ll look at conditional execution.

¹ The inability to branch backward with CBNZ explains why the sample atomic sequence we

used last time uses a two-instruction sequence of cmp r3, #0 followd by bne : It can’t use

cbnz because it wants to branch backward to retry the operation.

² This instruction was clearly named back when there were only two modes. Nowadays,

naming the instruction “exchange” would be ambiguous about which of the many modes it is

switching to.

Raymond Chen

Follow

https://www.youtube.com/watch?v=vS-zEH8YmiM&t=28s
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

