
1/2

June 16, 2021

The ARM processor (Thumb-2), part 13: Trampolines
devblogs.microsoft.com/oldnewthing/20210616-00

Raymond Chen

As we noted last time, the relative branch instructions have a limited reach. In particular, the

bl instruction, which is used for intra-module direct calls, has a reach of around ±16MB.

But what happens if the call target is too far away? Or if the function is a naïvely-imported

function?

In the case of a faraway call target, the linker injects a trampoline, called a veneer in the ARM

documentation.

 bl toofar_trampoline
...

toofar_trampoline:
 mov r12, #lo(|toofar|+1)
 movt r12, #hi(|toofar|+1)
 bx r12 ; jump to r12

The r12 register, known as the intraprocedure call register, is a register that the linker is

permitted to use for the purpose of generating trampolines and function prologues. From the

compiler’s point of view, it is super-volatile: Any branch instruction could damage the r12

register.

In practice, the compiler doesn’t use r12 for anything at all.

In the case of a naïvely-imported function, the actual call target is stored in the import

address table, and the linker must generate a trampoline that jumps to the imported

function:

 bl imported_trampoline
...

imported_trampoline:
 mov r12, #lo(iat_imported)
 movt r12, #hi(iat_imported)
 ldr pc, [r12]

https://devblogs.microsoft.com/oldnewthing/20210616-00/?p=105314
https://devblogs.microsoft.com/oldnewthing/20210615-00/?p=105311

2/2

Here, we take advantage of the overly-uniform pc register: Loading a value into it acts as a

jump instruction. It saves an instruction, because we don’t have to load the jump target into a

register and then BX to it.

Next time, we’ll look at a few miscellaneous instructions.

Bonus chatter: I don’t know why the linker prefers to use a MOV + MOVT instruction pair

instead of a single pc-relative LDR . My guess is that it avoids memory latency.

Bonus chatter 2: You might think that trampolines can never be deployed for jumps within

a function. However, that’s not true: Code motion due to profile-guided optimization can

cause rarely-executed code blocks to be relocated to faraway locations in the module. The

most likely case is that a relative short jump becomes long and has to be converted to a jump-

to-a-jump. In rare cases, the destination could end up more than 16MB away, in which case

you would need a full trampoline.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

