
1/3

June 17, 2021

The ARM processor (Thumb-2), part 14: Manipulating
flags

devblogs.microsoft.com/oldnewthing/20210617-00

Raymond Chen

There are two instructions for accessing the flags register directly.

 ; move register from special register
 mrs Rd, apsr ; Rd = APSR

 ; move special register from register
 msr apsr, Rd ; APSR = Rd

These instructions are for accessing special registers, but the only special register available to

user mode is APSR , so that’s all you’re going to see, if you even see this at all.

The format of the Application Program Status Register (APSR) is as follows:

9 8 7 6 5 4 3 2 1 0

N Z C V Q GE[3:0]

the N, Z, C, and V flags are updated by arithmetic operations. The GE flags are updated by

SIMD operations. The Q flag is different: It is set when a saturating arithmetic operation

overflows, and the only way to clear it is to issue an MSR instruction.

In user mode, the unlabeled bits of the APSR read as zero, and any attempts to modify them

are ignored.

The odd placement of the four main numeric flags dates back to the first revision of the ARM

processor.

The original ARM processor supported only 26-bit addresses, for a total address space of

64MB, and all instructions had to begin on a four-byte boundary. The unused bits of the pc

register were repurposed to hold the flags!

https://devblogs.microsoft.com/oldnewthing/20210617-00/?p=105317
http://www.peter-cockerell.net/aalp/html/ch-2.html

2/3

9 8 7 6 5 4 3 2 1 0

N Z C V program counter

The unlabeled bits are used only in kernel mode: In user mode, they read as zero and writes

are ignored. The Q and GE flags had not been invented yet, so the only user-mode flags are

N, Z, C, and V.

You can think of the flag bits as stowaways hiding inside the unused bits of the program

counter register. If used as the first source parameter in a binary operation, all the

extraneous non-program-counter bits were masked off, allowing you to perform pc-relative

addressing and pc-based arithmetic.¹ In other contexts, however, the full 32-bit value of pc is

used, flags and all.

When support expanded to a full 32-bit address space in ARM 3(?), those flag bits had to

move to the APSR register, but to faciliate porting, their bit positions were preserved.

There are no dedicated instructions for manipulating specific flags. If you want to, say, set

the carry flag and leave all other flags unchanged, you’ll have to copy the ASPR to a general-

purpose register, set the carry bit, and then set it back.

If you don’t mind corrupting the other flags, then you can use some tricks to coerce a

particular flag to a specific state.

 ; compare a number with itself
 cmp r0, r0 ; sets N = 0, Z = 1, C = 1, V = 0

Comparing a number sets flags according to the result of the subtraction, which produces

zero. Therefore, the flags are set for nonnegative, zero, carry set (no underflow), and no

overflow.

To clear carry, you can add zero:

 adds r0, r0, #0

Adding zero will never cause unsigned overflow, so this leaves carry clear.

Alternatively, if you don’t want to create a false write dependency on r0, you could use

 ; add 0 and set flags, but discard result
 cmn r0, #0

This takes advantage of the lie hiding inside the CMN instruction that causes CMN Rd, #0 to

clear carry when it really should have set it.

https://devblogs.microsoft.com/oldnewthing/20210607-00/?p=105288

3/3

If you want to force a nonnegative, zero result without affecting carry or overflow, you can

use the otherwise-neglected TEQ instruction:

 ; test a number for equivalence with itself
 teq r0, r0 ; sets N = 0, Z = 1, C and V unchanged

To force a nonzero result, you can compare the stack pointer against an odd number, since

Thumb-2 does not permit the stack pointer to be odd.

 cmp sp, #1 ; force nonzero result

You can’t use pc for this trick because Thumb-2 does not allow the pc register to be used by a

CMP instruction.

I couldn’t think of a single-instruction way to force the negative or overflow bit to be set

without modifying any integer registers. Maybe you can come up with something.²

Okay, so the second half of this article was mostly just code golf. Next time, we’ll return to

reality by looking at a few miscellaneous instructions.

¹ This explains the comment from Neil Rashbrook that you could use TEQ to copy the sign

bit from a register into the N flag:

 teq pc, Rn ; set flags according to (pc & 0x03FFFFFC) ^ Rn

Masking out the flag bits from the left-hand side (pc) means that the high bit is always clear.

Exclusive-or with zero has no effect, so the tested value has the same high bit as Rn, which

then becomes the N flag. This trick stopped working in ARM3, when the flags moved to a

separate special register.

² I considered taking advantage of the fact that in Thumb-2 mode, the bottom bit of pc is

always set, but the bit shifting and bit extraction instructions disallow pc as a source (or

destination).

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20210608-00/?p=105290#comment-138049
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

