
1/4

June 18, 2021

The ARM processor (Thumb-2), part 15: Miscellaneous
instructions

devblogs.microsoft.com/oldnewthing/20210618-00

Raymond Chen

There are far more ARM instructions than I’m going to cover here. I’ve skipped over the

floating point instructions, the SIMD instructions, and some other specialty instructions that

I haven’t yet seen come out of the compiler.

Here are a few that are still interesting, even if I haven’t seen the compiler generate them.

 ; count leading zeroes (high order bits)
 clz Rd, Rm ; Rd = number of leading zeroes in Rm

 ; reverse bits
 rbit Rd, Rm ; Rd = Rm bitwise reversed

 ; reverse bytes
 rev Rd, Rm ; Rd = Rm bytewise reversed

 ; reverse bytes in each halfword
 rev16 Rd, Rm ; Rd[31:24] = Rm[23:16]
 ; Rd[23:16] = Rm[31:24]
 ; Rd[15: 8] = Rm[7: 0]
 ; Rd[7: 0] = Rm[15: 8]

 ; reverse bytes in lower halfword and sign extend
 revsh Rd, Rm ; Rd[31:8] = Rm[7:0] sign extended
 ; Rd[7:0] = Rm[15:8]

A few miscellaneous bit-fiddling instructions. The reversal instructions are primarily for

changing data endianness.

The next few instructions provide multiprocessing hints.

 ; yield to other threads
 yield

 ; wait for interrupt
 wfi

https://devblogs.microsoft.com/oldnewthing/20210618-00/?p=105324

2/4

The YIELD instruction is a hint to multi-threading processors that the current thread

should be de-prioritized in favor of other threads. You typically see this instruction dropped

into spin loops, via the intrinsic __yield() .

The WFI instruction instructs the processor to go into a low-power state until an interrupt

occurs. There are other instructions related to “events” which I won’t bother going into.

The next few instructions are for communicating with the operating system:

 svc #imm8 ; system call
 bkpt #imm8 ; software breakpoint
 udf #imm8 ; undefined opcode¹

The system call and breakpoint instructions both carry an 8-bit immediate that the operating

system can choose to use for whatever purpose it desires. The breakpoint instruction breaks

the rules and always executes even if an encompassing IT instruction would normally cause

it to be ignored. In other words, bkpt overrides IT .

The undefined opcode is a block of 256 instructions from 0xde00 through 0xdeff that are

architecturally set aside as undefined instructions and which will not be given meaning in

future versions of the processor.

But just because the processor leaves them undefined doesn’t mean that operating system

can’t give them special meaning. Windows defines custom artificial instructions in the

undefined space.²

 __debugbreak ; udf #0xFE
 __debugservice ; udf #0xFD
 __assertfail ; udf #0xFC
 __fastfail ; udf #0xFB
 __rdpmccntr64 ; udf #0xFA
 __brkdiv0 ; udf #0xF9

Most of these are special ways of manually generating specific exceptions.

Opcode Exception Notes

__debugbreak STATUS_BREAKPOINT The “real” breakpoint instruction.

__debugservice STATUS_BREAKPOINT Communicate with debugger, r12 is
function code.

__assertfail STATUS_ASSERTION_
FAILURE

__fastfail STATUS_STACK_BUFFER_
OVERRUN

Misleadingly-named.

https://devblogs.microsoft.com/oldnewthing/20041215-00/?p=37003
https://devblogs.microsoft.com/oldnewthing/20190108-00/?p=100655

3/4

__brkdiv0 STATUS_INTEGER_
DIVIDE_BY_ZERO

The __brkdiv0 instruction is emitted by the compiler if it detects a zero denominator.

 cbnz r0, @F ; jump if denominator is nonzero
 __brkdiv0 ; oops: manually raise div0 exception
@@: bl __rt_sdiv ; software divide/remainder
 ; (r0, r1) = (r1 ÷ r0, r1 mod r0)

The last artificial instruction is __rdpmccntr64 , which reads a 64-bit cycle counter. This

special instruction has a dedicated fast path through the trap handler, so it can produce the

result in around 60 cycles.

There is also an instruction to access coprocessor registers.

 ; move register from coprocessor
 mrc (a bunch of stuff)

The coprocessor registers are encoded in a totally wacky way. There’s no point learning what

each of the values means. All that matters is that they represent the register you want to read.

There are a few coprocessor registers named software thread ID register which are not used

by the processor, but are provided with the intention that operating systems use them to

record per-thread information. The two available from user mode are named TPIDRURW and

TPIDRURO ; the first is read-write and the second is read-only. Windows uses TPIDRURW to

hold the thread information.

And of course, we have this guy:

 nop

Actually, there are two of this guy, a 16-bit NOP and a 32-bit NOP . The NOP instruction

does nothing but occupy space. Use it to pad code to meet alignment requirements, but do

not use it for timing because processors are allowed to optimize it out, or even run faster.

Now that we have the basic instruction set under our belt, we’ll look at the calling convention

next time.

Bonus chatter: Why doesn’t Windows use udf #0xff ? The gcc toolchain uses udf

#0xff as its “We should never get here” trap instruction. Putting an artificial instruction

there would cause such a program to continue executing after it thought it had triggered a

fatal exception.

¹ Although the ARM documentation provides the udf mnemonic for the undefined

instruction, not all assemblers recognize it, so you may be forced to encode the hex value

directly into your code if that’s what you want.

4/4

² I don’t know why Windows chose the udf space for these artificial opcodes instead of

using the svc space. Maybe there’s some fine print in the processor manual that makes

svc unsuitable for this sort of thing. We know that bkpt is a bad choice for an artificial

opcode because bkpt executes even if an encompassing IT instruction would have

skipped it.

Then again, use of udf to create artificial instructions is explicitly listed in the processor

architecture manual as a valid use of the udf instruction, so at least it’s not breaking any

unwritten rules.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

