
1/4

June 25, 2021

The ARM processor (Thumb-2), part 20: Code
walkthrough

devblogs.microsoft.com/oldnewthing/20210625-00

Raymond Chen

As is traditional, I wrap up the processor overview series with an annotated walkthrough of a

simple function. Here’s the function again:

extern FILE _iob[];

int fclose(FILE *stream)
{
 int result = EOF;

 if (stream->_flag & _IOSTRG) {
 stream->_flag = 0;
 } else {
 int index = stream - _iob;
 _lock_str(index);
 result = _fclose_lk(stream);
 _unlock_str(index);
 }

 return result;
}

Let’s dive in.

This function takes a single pointer parameter, which therefore is passed in the r0 register.

No parameters are passed on the stack.

 push {r3-r6,r11,lr}

We start by building our stack frame. From this one instruction we already learn that

This is not a lightweight leaf function, because we are using the stack. Saving the frame

pointer r11 and return address lr is therefore required.

We have one word of local variables and outbound parameters. This is inferred by the

inclusion of the otherwise-garbage r3 register. We don’t actually care about the value of

the r3 register. We are pushing it for the side effect of allocating space on the stack.

https://devblogs.microsoft.com/oldnewthing/20210625-00/?p=105369

2/4

We need three additional registers: r4, r5, and r6.

 add r11, sp, #0x10 ; link into stack frame chain

The next step in the standard prologue is to point the r11 register at the place where we saved

the previous r11 register, in order to maintain the stack frame chain.

 mov r5, r0 ; r5 = stream

We save the stream pointer in a non-volatile register for safekeeping.

; int result = EOF;
; if (stream->_flag & _IOSTRG) {

 ldr r3, [r5,#0xC] ; r3 = stream->_flag
 mvn r6, #0 ; r6 "result" = -1
 tst r3, #0x40 ; Q: Is _IOSTRG set?
 beq notstring ; N: Then need to flush for real

The compiler interleaved the initialization of the result variable (which is evidently being

kept in register r6) with the test of the _flags member.

Initializing result is done by moving ~0 , which is the same as 0xFFFFFFFF or -1 .

Testing the _IOSTRG bit is done by loading the flags into the r3 register (a scratch register)

and using the TST instruction, which sets the flags based on the result of a bitwise AND

operation. If the flag is clear, then the result is zero (“equal”), and the jump is taken. If the

flag is set, then we fall through.

; stream->_flag = 0;

 movs r3, #0 ; r3 = 0
 str r3, [r5,#0xC] ; stream->_flag = 0
 b done ; end of "true" branch

If the flag is clear, then we enter the “true” branch of the if statement, which sets the

_flag to zero. We cannot move a constant directly into memory, so we first load the

constant in to a scratch register (r3) and store the register to memory.

Note that we use a MOVS instruction, which sets flags, even though we don’t care about the

flags. That’s because the 8-bit immediate MOVS instruction has a compact 16-bit encoding,

whereas the corresponding MOV instruction uses a 32-bit encoding, so switching to MOVS

reduces code size.

3/4

notstring:
; int index = stream - _iob;

 ldr r3, =|_iob| ; r3 = address of _iob
 subs r4, r5, r3 ; r4 = stream - iob (byte offset)
 asrs r0, r4, #4 ; r0 = r4 / 16 (convert to index)

We use the literal pool version of the LDR pseudo-instruction to load the address of the

_iob array from the literal pool into a scratch register r3. We subtract that from the stream

variable, producing the byte offset into the preserved register r4. Shifting that right by 4 is

the same as dividing by 16, which produces the index into the r0 register.

; _lock_str(index);

 bl |_lock_str|

The r0 register is exactly where we pass the index parameter to the lock_str function, so

we’re all set to call it.

; result = _fclose_lk(stream);

 mov r0, r5 ; r0 = stream
 bl |_fclose_lk| ; _fclose_lk(stream)
 mov r6, r0 ; save result

Next comes another function call, this time to close the stream. We put the first (and only)

parameter into r0 and call the function. The result comes back in r0, and we save it in r6 so

we can return it when we’re done.

; _unlock_str(index);

 asrs r0, r4, #4 ; r0 = r4 / 16 (convert to index)
 bl |_unlock_str| ; _unlock_str(index)

To call _unlock_str , we recalculate the index from the byte offset (still in r4, since r4 is a

preserved register) and put the index into r0 so we can call _unlock_str .

It may seem odd to recalculate the index from the byte offset. Why not just save the index the

first time?

The reason is that mov r0, r4 and asrs r0, r4, #4 are the same size: They both use

16-bit encoding. Recalculating the value takes the same number of code bytes as copying it,

and it avoids having to save the index anywhere, thereby saving two bytes. Thanks to the

barrel shifter (which the ARM is very proud of, in case you have forgotten), shifting a register

is just as fast as copying it.

We now fall through to the end of the function.

4/4

done:

; return result;

 mov r0, r6 ; return result (r6)

The function return value goes into r0, so we copy it there from r6.

 pop {r3-r6,r11,pc}

For this function, we can pack the the function epilogue into just one instruction: Popping r3

cleans up our local variables, popping r4 through r6 restores the saved registers, popping r11

unlinks the current stack frame from the stack frame chain, and popping the inbound return

address into pc transfers control to the return address.

That’s the end of the function, but we’re not done yet!

 __debugbreak ; recover word alignment

 dcd |_iob|

We still have the matter of the literal pool we used in the ldr r3, =|_iob| pseudo-

instruction. That pseudo-instruction turns into the instruction

 ldr r3, [pc, #...] ; load register from memory

where the #... is the offset to the desired literal. When you use the pc register as a base

index, the value is rounded down to the nearest multiple of four, and the offset must also be a

multiple of four. This means that the value must be at a word-aligned address. The

unreachable __debugbreak instruction at the end of the function is just padding so that the

|_iob| literal can be placed on a word boundary.

So there we have it, our whirlwind tour of the ARM processor in Thumb-2 mode. I don’t

know about you, but I’m exhausted.

¹ Commenter Neil Rashbrook notes that stack space reserved by pushing the r3 register is

never used. It exists only to satisfy the requirement that the stack be 8-byte aligned.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

