
1/5

July 7, 2021

On the perils of holding a lock across a coroutine
suspension point, part 1: The set-up

devblogs.microsoft.com/oldnewthing/20210707-00

Raymond Chen

Say you want to perform a bunch of asynchronous operations involving some object state, but

also want to make sure that no other tasks access that object state at the same time. For

synchronous code, you would use a traditional synchronization object like a mutex or critical

section:

void MyObject::RunOne()
{
 std::lock_guard guard(m_mutex);

 if (!m_list.empty()) {
 auto& item = m_list.front();
 item.Run();
 item.Cleanup();
 m_list.pop_front();
 }
}

The mutex ensures that only one attempt to process an item from the list is active at a time,

and also to prevent any other code from mutating the m_list while we are using it.

But say that some of these operations are asynchronous. For simplicity, I’m eliding the

traditional auto lifetime = get_strong(); that is used to prevent the object from being

destructed while awaiting. (Let’s say that the rule is that you cannot release your reference to

MyObject until Run One Async completes.)

https://devblogs.microsoft.com/oldnewthing/20210707-00/?p=105417

2/5

IAsyncAction MyObject::RunOneAsync()
{
 std::lock_guard guard(m_mutex);

 if (!m_list.empty()) {
 auto& item = m_list.front();
 co_await item.RunAsync();
 item.Cleanup();
 m_list.pop_front();
 }
}

Is this okay?

One argument I’ve heard is that this is not okay because the co_await causes the original

Run One Async call to to return an IAsync Action to its caller, and as part of the act of

returning the IAsync Action , the lock is released.

This argument is incorrect. The lock remains held while the coroutine is suspended. After all,

if objects were destructed at suspension, then you wouldn’t be able to carry anything across a

suspension point!

IAsyncAction WidgetManager::WhateverAsync()
{
 auto lifetime = get_strong();
 std::string name = m_widget.GetName();
 m_widget.SetName("temporary");
 co_await m_widget.SomethingAsync();
 m_widget.SetName(name); // certainly "name" is still valid, right?
 // certainly "lifetime" is still holding our object alive, right?
}

Don’t worry. name and lifetime are still valid across the suspension because the formal

parameters and local variables are kept in the coroutine frame, which remains alive while the

coroutine is suspended. Indeed, the lifetime relies upon it!

However, it’s the liveness of the lock guard that is the issue here.

Since the lock guard hasn’t been destructed, the mutex remains locked while the coroutine is

suspended.

Now things get exciting.

Suppose we have another coroutine that wants the lock. Heck, it could very well be another

call to Run One Async !

RunOneAsync #1

3/5

 construct lock_guard m_mutex.lock()

 auto& item = m_list.front();

 co_await item.RunAsync(); → Suspended

RunOneAsync #1 returns IAsyncAction

↓

Thread available to do other work

↓

RunOneAsync #2

 construct lock_guard m_mutex.lock()

Now we’re in trouble.

If the m_mutex supports recursive acquisition, then what happens is that the second call to

Run One Async successfully acquires the mutex (recursive acquisition), and execution

continues:

 RunOneAsync #2 continues

 auto& item = m_list.front();

 co_await item.RunAsync(); → Suspended

RunOneAsync #2 returns IAsyncAction

↓

Thread available to do other work

We are running the front element twice! I bet it’s not expecting that.

The mutex failed at its intended purpose of serializing calls to Run One Async .

Okay, but wait, the disaster is still unfolding.

Eventually, the two calls will complete, in some order. Let’s say that #1 finishes first.

Execution continues:

RunOneAsync #1 resumes ← RunAsync #1 completes

4/5

 item.Cleanup(); Cleaning up while RunAsync #2 still outstanding

 m_list.pop_front(); Destructing head item while #2 is still using it

 destruct lock_guard m_mutex.unlock()

RunOneAsync #1 completes

↓

Thread available to do other work

↓

RunOneAsync #2 resumes ← RunAsync #2 completes

 item.Cleanup(); Cleaning up already-destructed object

 m_list.pop_front(); Popping an item that was never run

 destruct lock_guard m_mutex.unlock()

RunOneAsync #2 completes

When the first RunAsync completes, the first Run One Async resumes, and it proceeds to

clean up the item that finished running, and then remove the head item from the list, thereby

destructing it. All this happens even though the second Run One Async is still using it.

The first Run One Async completes, having created a right mess of things but escaping

unharmed.

When the second Run Async completes, the second Run One Async resumes, and it tries to

clean up the item that has already been destructed. You get sent this crash dump and you

scratch your head because you’re looking at the code and you see that mutex right there, and

you’re thinking, “How can this thing get prematurely destructed? It’s protected by a mutex!”

Now, maybe the Cleanup method happens by sheer luck not to crash. It “only” corrupts

some memory. That just makes the debugging even harder.

The second Run One Async then pops the front item from the list, thinking it’s popping the

item that it just finished running, when in fact it’s popping an item on the list that was never

run at all.

Now the bug is that the program keeps running, but sometimes, items put onto the work list

are thrown away without ever being run or cleaned up. Meanwhile, some items are run twice.

This bug doesn’t come with crash dumps. It’s just end-user reports from the field that your

program isn’t doing its job.

5/5

Basically, what’s going on is that thanks to coroutines sharing a thread, your recursive mutex

is not doing its job of ensuring mutual exclusion. Since everything is happening on a single

thread, the recursive mutex always says, “Oh, I remember you. Come on in!”

Next time, we’ll look at what happens if the mutex does not support recursive acquisition.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

