
1/2

July 12, 2021

Why do smart pointers null out the wrapped pointer
before destroying it?

devblogs.microsoft.com/oldnewthing/20210712-00

Raymond Chen

When you null out a smart pointer type, the smart pointer type nulls out the old pointer

before releasing it, rather than releasing the member and then setting it to null. (All source

code samples has been simplified for expository purposes.)

 Actual Instead of

std::unique_ptr

void reset(pointer p = nullptr)
noexcept
{
 pointer old =
std::exchange(m_p, p);
 if (old) m_deleter(old);
}

void reset(pointer p = nullptr)
noexcept
{
 if (m_p) m_deleter(m_p);
 m_p = p;
}

ATL::CComPtr

void Release() throw()
{
 T* pTemp = p;
 if (pTemp) {
 p = NULL;
 pTemp->Release();
 }
}

void Release() throw()
{

 if (p) {
 p->Release();
 p = NULL;
 }
}

WRL::ComPtr

unsigned long InternalRelease()
throw()
{
 unsigned long ref = 0;
 T* temp = ptr_;
 if (temp != nullptr) {
 p = nullptr;
 ref = temp->Release();
 }
 return ref;
}

unsigned long InternalRelease()
throw()
{
 unsigned long ref = 0;

 if (p) {
 ref = p->Release();
 p = nullptr;
 }
 return ref;
}

https://devblogs.microsoft.com/oldnewthing/20210712-00/?p=105429

2/2

winrt::com_ptr

void release_ref() noexcept
{
 if (m_ptr) {
 std::exchange(m_ptr, {})-
>Release();

 }
}

void release_ref() noexcept
{
 if (m_ptr) {
 m_ptr->Release();
 m_ptr = nullptr;
 }
}

Why does the old value get detached from the smart pointer before releasing it? Why not

release it, and then set it to null?

One theory is that it’s for exception safety, in case an exception occurs in the deleter or

Release method. But that theory doesn’t hold up because the method is marked

noexcept (or its old-school sort-of equivalent throw()).

Another theory is that it enables tail call optimization. While that’s true, it’s not the primary

reason for the order of operations being the way it is.

The reason why the member variable is nulled out before releasing its former value is to

avoid reentrancy issues.

If the deleter or the Release method leads (through some chain of intermediate

operations) to a call on the original smart pointer, we don’t want that call to use a pointer

that is in mid-destruction.

For example, the smart pointer might be part of a cache. During a pruning pass, the cache

entry is determined to be stale and is released. The Release method might call back into

the cache to unregister itself, and the unregister method will look in its cache to find the

matching entry and release it. Congratulations, you just created a double-free bug.

Detaching the wrapped pointer before destructing it avoids this re-entrancy problem.

Bonus chatter: Another way of looking at this is that it is an inlined version of the copy-

and-swap idiom. The empty object is swapped in, and then the old object is destructed.

Bonus reading: The proper order of managing reference counts when changing the target

of a smart pointer.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20180928-00/?p=99855
https://devblogs.microsoft.com/oldnewthing/20040406-00/?p=39903
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

