
1/3

July 13, 2021

How did copying and renaming with wildcards work in
MS-DOS?

devblogs.microsoft.com/oldnewthing/20210713-00

Raymond Chen

Some time ago, I described how wildcards worked in MS-DOS, specifically how wildcards

participate in pattern matching. Today, I’ll look at how wildcards participate in copying and

renaming.

First, the source and destination patterns are expanded into the eleven-character FCB format

by the algorithm I described in that earlier article.

Next, the directory is searched for files that match the source pattern.

Once such a match is found, the fun begins: Applying the rename pattern.

The way it works is that the rename pattern is used to produce the resulting file name, except

that if a question mark is encountered in the rename pattern, then the corresponding

character from the source file name is copied.

Here’s an example with renaming, although the same exercise also applies to copying:

REN ABC*.D?F GHIJ*.KL? 

The source and destination patterns are

 Human-readable Parsed pattern

Source ABC*.D?F A B C ? ? ? ? ? D ? F

Destination GHIJ*.KL? G H I J ? ? ? ? K L ?

Suppose we have a file ABC12345.D6F that matches the source pattern. How do we

transform it according to the destination pattern?

https://devblogs.microsoft.com/oldnewthing/20210713-00/?p=105433
https://devblogs.microsoft.com/oldnewthing/20071217-00/?p=24143


2/3

Simple: Stack the original file name and the destination pattern on top of each other. For

each character of the output, take the corresponding character from the destination pattern,

unless it is a question mark, in which case you take the corresponding character from the

original file name.

 Human-readable Parsed pattern

Actual ABC12345.D6F A B C 1 2 3 4 5 D 6 F

Destination GHIJ*.KL? G H I J ? ? ? ? K L ?

Result GHIJ2345.KLF G H I J 2 3 4 5 K L F

One way of thinking of this is that you treat the destination pattern as a stencil, with holes

punched out where the question marks are. You then overlay the stencil on top of the original

file name. The characters from the original file name show through the holes, and what you

see is the result.

G H I J 2 3 4 5 K L F

This algorithm enabled some simple rename patterns, like changing a file extension:

REN FRED*.TXT *.DOC 

Suppose there is a file called FRED123.TXT. Let’s see what happens:

 Human-readable Parsed pattern

Source FRED*.* F R E D ? ? ? ? ? ? ?

Match FRED123.TXT F R E D 1 2 3 · T X T

Destination *.DOC ? ? ? ? ? ? ? ? D O C

Result FRED123.DOC F R E D 1 2 3 · D O C

Observe that we didn’t have to repeat FRED in the replacement pattern. The asterisk (which

parses into question marks) just copies the existing file name, which includes the FRED.

Does this make sense? Because it does carry its own consequences.

If you’re not expecting the “copies the existing file name” behavior, and the question marks in

the destination don’t match the question marks in the source, the results can be somewhat

surprising:



3/3

ren FRED*.* WILMA*.* 

Suppose there is a file called FRED123.TXT, and you were hoping to rename it to

WILMA123.TXT. Let’s see what happens:

 Human-readable Parsed pattern

Source FRED*.* F R E D ? ? ? ? ? ? ?

Match FRED123.TXT F R E D 1 2 3 · T X T

Destination WILMA*.* W I L M A ? ? ? ? ? ?

Result WILMA23.TXT W I L M A 2 3 · T X T

Since WILMA is one character longer than FRED, the question marks don’t line up. After

copying WILMA to the result, we reach the first question mark in the destination, which lines

up with the second question mark in the source, not the first. The character that is copied is

the sixth character from the source, which is a 2. The 1 from the source is not copied because

it was overwritten by the A in WILMA.

Wildcards are just question marks, and question marks match or copy a single corresponding

character. They don’t “go looking around for their buddy question mark”. Computers weren’t

that fancy back then.

We had agreed that the REN FRED*.TXT *.DOC made sense in that it didn’t rename

FRED123.TXT to 123.DOC. But that rule that made sense then doesn’t seem to make sense

in this more complicated case where we are doing what is more like a search/replace in the

filename.

It’s important to understand the MS-DOS wildcard copy/rename algorithm because

Windows remains compatible with it, so as not to break existing batch files. We’ll look at this

some more next time.

Raymond Chen

Follow

 

 

https://devblogs.microsoft.com/oldnewthing/20210714-00/?p=105439
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

