
1/12

July 15, 2021

Protecting customers from a private-sector offensive
actor using 0-day exploits and DevilsTongue malware

microsoft.com/en-us/security/blog/2021/07/15/protecting-customers-from-a-private-sector-offensive-actor-using-0-day-
exploits-and-devilstongue-malware/

By Microsoft Threat Intelligence

The Microsoft Threat Intelligence Center (MSTIC) alongside the Microsoft Security Response
Center (MSRC) has uncovered a private-sector offensive actor, or PSOA, that we are calling
SOURGUM in possession of now-patched, Windows 0-day exploits (CVE-2021-31979 and
CVE-2021-33771).

Private-sector offensive actors are private companies that manufacture and sell
cyberweapons in hacking-as-a-service packages, often to government agencies around the
world, to hack into their targets’ computers, phones, network infrastructure, and other
devices. With these hacking packages, usually the government agencies choose the targets

https://www.microsoft.com/en-us/security/blog/2021/07/15/protecting-customers-from-a-private-sector-offensive-actor-using-0-day-exploits-and-devilstongue-malware/
https://www.microsoft.com/en-us/security/blog/author/microsoft-security-threat-intelligence/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31979
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33771

2/12

and run the actual operations themselves. The tools, tactics, and procedures used by these
companies only adds to the complexity, scale, and sophistication of attacks. We take these
threats seriously and have moved swiftly alongside our partners to build in the latest
protections for our customers.

MSTIC believes SOURGUM is an Israel-based private-sector offensive actor. We would like
to thank the Citizen Lab, at the University of Toronto’s Munk School, for sharing the sample
of malware that initiated this work and their collaboration during the investigation. In their
blog, Citizen Lab asserts with high confidence that SOURGUM is an Israeli company
commonly known as Candiru. Third-party reports indicate Candiru produces “hacking tools
[that] are used to break into computers and servers”.

As we shared in the Microsoft on the Issues blog, Microsoft and Citizen Lab have worked
together to disable the malware being used by SOURGUM that targeted more than 100
victims around the world including politicians, human rights activists, journalists, academics,
embassy workers, and political dissidents. To limit these attacks, Microsoft has created and
built protections into our products against this unique malware, which we are calling
DevilsTongue. We have shared these protections with the security community so that we can
collectively address and mitigate this threat. We have also issued a software update that will
protect Windows customers from the associated exploits that the actor used to help deliver
its highly sophisticated malware.

SOURGUM victimology

Media reports (1, 2, 3) indicate that PSOAs often sell Windows exploits and malware in
hacking-as-a-service packages to government agencies. Agencies in Uzbekistan, United
Arab Emirates, and Saudi Arabia are among the list of Candiru’s alleged previous customers.
These agencies, then, likely choose whom to target and run the cyberoperations themselves.

Microsoft has identified over 100 victims of SOURGUM’s malware, and these victims are as
geographically diverse as would be expected when varied government agencies are believed
to be selecting the targets. Approximately half of the victims were found in Palestinian
Authority, with most of the remaining victims located in Israel, Iran, Lebanon, Yemen, Spain
(Catalonia), United Kingdom, Turkey, Armenia, and Singapore. To be clear, the identification
of victims of the malware in a country doesn’t necessarily mean that an agency in that
country is a SOURGUM customer, as international targeting is common.

Any Microsoft 365 Defender and Microsoft Defender for Endpoint alerts containing detection
names for the DevilsTongue malware name are signs of compromise by SOURGUM’s
malware. We have included a comprehensive list of detection names below for customers to
perform additional hunting in their environments.

Exploits

https://citizenlab.ca/2021/07/hooking-candiru-another-mercenary-spyware-vendor-comes-into-focus/
https://www.haaretz.com/middle-east-news/.premium-top-secret-israeli-cyberattack-firm-revealed-1.6805950
https://blogs.microsoft.com/on-the-issues/2021/07/15/cyberweapons-cybersecurity-sourgum-malware/
https://www.theguardian.com/technology/2015/jul/06/hacking-team-hacked-firm-sold-spying-tools-to-repressive-regimes-documents-claim
https://www.theguardian.com/media/2020/dec/20/citizen-lab-nso-dozens-of-aljazeera-journalists-allegedly-hacked-using-israeli-firm-spyware
https://www.wired.co.uk/article/phone-hacking-mollitiam-industries
https://urldefense.com/v3/__https:/www.forbes.com/sites/thomasbrewster/2019/10/03/meet-candiru-the-super-stealth-cyber-mercenaries-hacking-apple-and-microsoft-pcs-for-profit/__;!!OPvj_Mo!qxCbqIivPDfDqHshaSJGunR3h_DoOYV2RVnwMJgvScAoj3M1t_G2HZOUIdiCpg%24
https://www.microsoft.com/en-us/security/business/threat-protection/microsoft-365-defender
https://www.microsoft.com/en-us/microsoft-365/security/endpoint-defender

3/12

SOURGUM appears to use a chain of browser and Windows exploits, including 0-days, to
install malware on victim boxes. Browser exploits appear to be served via single-use URLs
sent to targets on messaging applications such as WhatsApp.

During the investigation, Microsoft discovered two Windows 0-day exploits for vulnerabilities
tracked as CVE-2021-31979 and CVE-2021-33771, both of which have been fixed in the July
2021 security updates. These vulnerabilities allow privilege escalation, giving an attacker the
ability to escape browser sandboxes and gain kernel code execution. If customers have
taken the July 2021 security update, they are protected from these exploits.

CVE-2021-31979 fixes an integer overflow within Windows NT-based operating system
(NTOS). This overflow results in an incorrect buffer size being calculated, which is then used
to allocate a buffer in the kernel pool. A buffer overflow subsequently occurs while copying
memory to the smaller-than-expected destination buffer. This vulnerability can be leveraged
to corrupt an object in an adjacent memory allocation. Using APIs from user mode, the
kernel pool memory layout can be groomed with controlled allocations, resulting in an object
being placed in the adjacent memory location. Once corrupted by the buffer overflow, this
object can be turned into a user mode to kernel mode read/write primitive. With these
primitives in place, an attacker can then elevate their privileges.

CVE-2021-33771 addresses a race condition within NTOS resulting in the use-after-free of a
kernel object. By using multiple racing threads, the kernel object can be freed, and the freed
memory reclaimed by a controllable object. Like the previous vulnerability, the kernel pool
memory can be sprayed with allocations using user mode APIs with the hopes of landing an
object allocation within the recently freed memory. If successful, the controllable object can
be used to form a user mode to kernel mode read/write primitive and elevate privileges.

DevilsTongue malware overview

DevilsTongue is a complex modular multi-threaded piece of malware written in C and C++
with several novel capabilities. Analysis is still on-going for some components and
capabilities, but we’re sharing our present understanding of the malware so defenders can
use this intelligence to protect networks and so other researchers can build on our analysis.

For files on disk, PDB paths and PE timestamps are scrubbed, strings and configs are
encrypted, and each file has a unique hash. The main functionality resides in DLLs that are
encrypted on disk and only decrypted in memory, making detection more difficult.
Configuration and tasking data is separate from the malware, which makes analysis harder.
 DevilsTongue has both user mode and kernel mode capabilities. There are several novel
detection evasion mechanisms built in. All these features are evidence that SOURGUM
developers are very professional, have extensive experience writing Windows malware, and
have a good understanding of operational security.

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-31979
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-33771

4/12

When the malware is installed, a first-stage ‘hijack’ malware DLL is dropped in a subfolder of
C:\Windows\system32\IME\; the folders and names of the hijack DLLs blend with legitimate
names in the \IME\ directories. Encrypted second-stage malware and config files are
dropped into subfolders of C:\Windows\system32\config\ with a .dat file extension. A third-
party legitimate, signed driver physmem.sys is dropped to the system32\drivers folder. A file
called WimBootConfigurations.ini is also dropped; this file has the command for following the
COM hijack. Finally, the malware adds the hijack DLL to a COM class registry key,
overwriting the legitimate COM DLL path that was there, achieving persistence via COM
hijacking.

From the COM hijacking, the DevilsTongue first-stage hijack DLL gets loaded into a
svchost.exe process to run with SYSTEM permissions. The COM hijacking technique means
that the original DLL that was in the COM registry key isn’t loaded. This can break system
functionality and trigger an investigation that could lead to the discovery of the malware, but
DevilsTongue uses an interesting technique to avoid this. In its DllMain function it calls
LoadLibrary on the original COM DLL so it is correctly loaded into the process. DevilsTongue
then searches the call stack to find the return address of LoadLibraryExW (i.e., the function
currently loading the DevilsTongue DLL), which would usually return the base address of the
DevilsTongue DLL.

Once the LoadLibraryExW return address has been found, DevilsTongue allocates a small
buffer with shellcode that puts the COM DLL’s base address (imecfmup.7FFE49060000 in
Figure 1) into the rax register and then jumps to the original return address of
LoadLibraryExW (svchost.7FF78E903BFB in Figures 1 and 2). In Figure 1 the COM DLL is
named imecfmup rather than a legitimate COM DLL name because some DevilsTongue
samples copied the COM DLL to another location and renamed it.

Figure 1. DevilsTongue return address modification shellcode

DevilsTongue then swaps the original LoadLibraryExW return address on the stack with the
address of the shellcode so that when LoadLibraryExW returns it does so into the shellcode
(Figures 2 and 3). The shellcode replaces the DevilsTongue base address in rax with the
COM DLL’s base address, making it look like LoadLibraryExW has returned the COM DLL’s
address. The svchost.exe host process now uses the returned COM DLL base address as it
usually would.

https://attack.mitre.org/techniques/T1546/015/

5/12

Figure 2. Call stack before stack swap, LoadLibraryExW in kernelbase returning to
svchost.exe (0x7FF78E903BFB)

Figure 3. Call stack after stack swap, LoadLibraryExW in kernelbase returning to the
shellcode address (0x156C51E0000 from Figure 1)

This technique ensures that the DevilsTongue DLL is loaded by the svchost.exe process,
giving the malware persistence, but that the legitimate COM DLL is also loaded correctly so
there’s no noticeable change in functionality on the victim’s systems.

After this, the hijack DLL then decrypts and loads a second-stage malware DLL from one of
the encrypted .dat files. The second-stage malware decrypts another .dat file that contains
multiple helper DLLs that it relies on for functionality.

DevilsTongue has standard malware capabilities, including file collection, registry querying,
running WMI commands, and querying SQLite databases. It’s capable of stealing victim
credentials from both LSASS and from browsers, such as Chrome and Firefox. It also has
dedicated functionality to decrypt and exfiltrate conversations from the Signal messaging
app.

It can retrieve cookies from a variety of web browsers. These stolen cookies can later be
used by the attacker to sign in as the victim to websites to enable further information
gathering. Cookies can be collected from these paths (* is a wildcard to match any folders):

%LOCALAPPDATA%\Chromium\User Data*\Cookies
%LOCALAPPDATA%\Google\Chrome\User Data*\Cookies
%LOCALAPPDATA%\Microsoft\Windows\INetCookies
%LOCALAPPDATA%\Packages*\AC*\MicrosoftEdge\Cookies
%LOCALAPPDATA%\UCBrowser\User Data_i18n*\Cookies.9
%LOCALAPPDATA%\Yandex\YandexBrowser\User Data*\Cookies
%APPDATA%\Apple Computer\Safari\Cookies\Cookies.binarycookies
%APPDATA%\Microsoft\Windows\Cookies
%APPDATA%\Mozilla\Firefox\Profiles*\cookies.sqlite

https://signal.org/

6/12

%APPDATA%\Opera Software\Opera Stable\Cookies

Interestingly, DevilsTongue seems able to use cookies directly from the victim’s computer on
websites such as Facebook, Twitter, Gmail, Yahoo, Mail.ru, Odnoklassniki, and Vkontakte to
collect information, read the victim’s messages, and retrieve photos. DevilsTongue can also
send messages as the victim on some of these websites, appearing to any recipient that the
victim had sent these messages. The capability to send messages could be weaponized to
send malicious links to more victims.

Alongside DevilsTongue a third-party signed driver is dropped to
C:\Windows\system32\drivers\physmem.sys. The driver’s description is “Physical Memory
Access Driver,” and it appears to offer a “by-design” kernel read/write capability. This
appears to be abused by DevilsTongue to proxy certain API calls via the kernel to hinder
detection, including the capability to have some of the calls appear from other processes.
Functions capable of being proxied include CreateProcessW, VirtualAllocEx,
VirtualProtectEx, WriteProcessMemory, ReadProcessMemory, CreateFileW and
RegSetKeyValueW.

Prevention and detection

To prevent compromise from browser exploits, it’s recommended to use an isolated
environment, such as a virtual machine, when opening links from untrusted parties. Using a
modern version of Windows 10 with virtualization-based protections, such as Credential
Guard, prevents DevilsTongue’s LSASS credential-stealing capabilities. Enabling the attack
surface reduction rule “Block abuse of exploited vulnerable signed drivers” in Microsoft
Defender for Endpoint blocks the driver that DevilsTongue uses. Network protection blocks
known SOURGUM domains.

Detection opportunities

This section is intended to serve as a non-exhaustive guide to help customers and peers in
the cybersecurity industry to detect the DevilsTongue malware. We’re providing this guidance
with the expectation that SOURGUM will likely change the characteristics we identify for
detection in their next iteration of the malware. Given the actor’s level of sophistication,
however, we believe that outcome would likely occur irrespective of our public guidance.

File locations

The hijack DLLs are in subfolders of \system32\ime\ with names starting with ‘im’. However,
they are blended with legitimate DLLs in those folders. To distinguish between the malicious
and benign, the legitimate DLLs are signed (on Windows 10) whereas the DevilsTongue files
aren’t. Example paths:

C:\Windows\System32\IME\IMEJP\imjpueact.dll

https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/attack-surface-reduction?view=o365-worldwide#block-abuse-of-exploited-vulnerable-signed-drivers
https://docs.microsoft.com/en-us/microsoft-365/security/defender-endpoint/network-protection?view=o365-worldwide

7/12

C:\Windows\system32\ime\IMETC\IMTCPROT.DLL
C:\Windows\system32\ime\SHARED\imecpmeid.dll

The DevilsTongue configuration files, which are AES-encrypted, are in subfolders of
C:\Windows\system32\config\ and have a .dat extension. The exact paths are victim-specific,
although some folder names are common across victims. As the files are AES-encrypted,
any files whose size mod 16 is 0 can be considered as a possible malware config file. The
config files are always in new folders, not the legitimate existing folders (e.g., on Windows
10, never in \Journal, \systemprofile, \TxR etc.). Example paths:

C:\Windows\system32\config\spp\ServiceState\Recovery\pac.dat
C:\Windows\system32\config\cy-GB\Setup\SKB\InputMethod\TupTask.dat
C:\Windows\system32\config\config\startwus.dat

Commonly reused folder names in the config file paths:

spp
SKB
curv
networklist
Licenses
InputMethod
Recovery

The .ini reg file has the unique name WimBootConfigurations.ini and is in a subfolder of
system32\ime\. Example paths:

C:\Windows\system32\ime\SHARED\WimBootConfigurations.ini
C:\Windows\system32\ime\IMEJP\WimBootConfigurations.ini
C:\Windows\system32\ime\IMETC\WimBootConfigurations.ini

The Physmem driver is dropped into system32:

C:\Windows\system32\drivers\physmem.sys

Behaviors

The two COM keys that have been observed being hijacked for persistence are listed below
with their default clean values. If their default value DLL is in the \system32\ime\ folder, the
DLL is likely DevilsTongue.

HKLM\SOFTWARE\Classes\CLSID\{CF4CC405-E2C5-4DDD-B3CE-
5E7582D8C9FA}\InprocServer32 = %systemroot%\system32\wbem\wmiutils.dll (clean
default value)

8/12

HKLM\SOFTWARE\Classes\CLSID\{7C857801-7381-11CF-884D-
00AA004B2E24}\InProcServer32 = %systemroot%\system32\wbem\wbemsvc.dll
(clean default value)

File content and characteristics

This Yara rule can be used to find the DevilsTongue hijack DLL:

import "pe"
 rule DevilsTongue_HijackDll

{
 meta:

description = "Detects SOURGUM's DevilsTongue hijack DLL"

author = "Microsoft Threat Intelligence Center (MSTIC)"

 date = "2021-07-15"

strings:
 $str1 = "windows.old\\windows" wide

$str2 = "NtQueryInformationThread"

 $str3 = "dbgHelp.dll" wide

$str4 = "StackWalk64"

$str5 = "ConvertSidToStringSidW"
 $str6 = "S-1-5-18" wide

$str7 = "SMNew.dll" // DLL original name

 // Call check in stack manipulation

// B8 FF 15 00 00 mov eax, 15FFh

// 66 39 41 FA cmp [rcx-6], ax
 // 74 06 jz short loc_1800042B9

// 80 79 FB E8 cmp byte ptr [rcx-5], 0E8h ; 'è'

 $code1 = {B8 FF 15 00 00 66 39 41 FA 74 06 80 79 FB E8}

// PRNG to generate number of times to sleep 1s before exiting

// 44 8B C0 mov r8d, eax
 // B8 B5 81 4E 1B mov eax, 1B4E81B5h

// 41 F7 E8 imul r8d

 // C1 FA 05 sar edx, 5

// 8B CA mov ecx, edx

// C1 E9 1F shr ecx, 1Fh
 // 03 D1 add edx, ecx

// 69 CA 2C 01 00 00 imul ecx, edx, 12Ch
 // 44 2B C1 sub r8d, ecx

// 45 85 C0 test r8d, r8d

// 7E 19 jle short loc_1800014D0

 $code2 = {44 8B C0 B8 B5 81 4E 1B 41 F7 E8 C1 FA 05 8B CA C1 E9 1F 03 D1 69 CA

2C 01 00 00 44 2B C1 45 85 C0 7E 19}
 condition:

filesize < 800KB and

uint16(0) == 0x5A4D and

 (pe.characteristics & pe.DLL) and

(

9/12

4 of them or

($code1 and $code2) or
 (pe.imphash() == "9a964e810949704ff7b4a393d9adda60")

)
 }

Microsoft Defender Antivirus detections

Microsoft Defender Antivirus detects DevilsTongue malware with the following detections:

Trojan:Win32/DevilsTongue.A!dha
Trojan:Win32/DevilsTongue.B!dha
Trojan:Script/DevilsTongueIni.A!dha
VirTool:Win32/DevilsTongueConfig.A!dha
HackTool:Win32/DevilsTongueDriver.A!dha

Microsoft Defender for Endpoint alerts

Alerts with the following titles in the security center can indicate DevilsTongue malware
activity on your network:

COM Hijacking
Possible theft of sensitive web browser information
Stolen SSO cookies

Azure Sentinel query

To locate possible SOURGUM activity using Azure Sentinel, customers can find a Sentinel
query containing these indicators in this GitHub repository.

Indicators of compromise (IOCs)

No malware hashes are being shared because DevilsTongue files, except for the third part
driver below, all have unique hashes, and therefore, are not a useful indicator of
compromise.

Physmem driver

Note that this driver may be used legitimately, but if it’s seen on path
C:\Windows\system32\drivers\physmem.sys then it is a high-confidence indicator of
DevilsTongue activity. The hashes below are provided for the one driver observed in use.

MD5: a0e2223868b6133c5712ba5ed20c3e8a
SHA-1: 17614fdee3b89272e99758983b99111cbb1b312c
SHA-256:
c299063e3eae8ddc15839767e83b9808fd43418dc5a1af7e4f44b97ba53fbd3d

https://github.com/Azure/Azure-Sentinel/blob/master/Detections/MultipleDataSources/SOURGUM_IOC.yaml

10/12

Domains

noc-service-streamer[.]com
fbcdnads[.]live
hilocake[.]info
backxercise[.]com
winmslaf[.]xyz
service-deamon[.]com
online-affiliate-mon[.]com
codeingasmylife[.]com
kenoratravels[.]com
weathercheck[.]digital
colorpallatess[.]com
library-update[.]com
online-source-validate[.]com
grayhornet[.]com
johnshopkin[.]net
eulenformacion[.]com
pochtarossiy[.]info

Related Posts

11/12

Research
Threat intelligence
Microsoft Incident Response
Threat actors

Oct 2517 min read

Octo Tempest crosses boundaries to facilitate extortion,
encryption, and destruction
Microsoft has been tracking activity related to the financially motivated threat actor
Octo Tempest, whose evolving campaigns represent a growing concern for many
organizations across multiple industries.

Uncursing the ncurses: Memory corruption vulnerabilities
found in library
A set of memory corruption vulnerabilities in the ncurses library could have allowed
attackers to chain the vulnerabilities to elevate privileges and run code in the targeted
program's context or perform other malicious actions.

https://www.microsoft.com/en-us/security/blog/2023/10/25/octo-tempest-crosses-boundaries-to-facilitate-extortion-encryption-and-destruction/
https://www.microsoft.com/en-us/security/blog/content-type/research/
https://www.microsoft.com/en-us/security/blog/topic/threat-intelligence/
https://www.microsoft.com/en-us/security/blog/products/microsoft-incident-response/
https://www.microsoft.com/en-us/security/blog/threat-intelligence/threat-actors/
https://www.microsoft.com/en-us/security/blog/2023/10/25/octo-tempest-crosses-boundaries-to-facilitate-extortion-encryption-and-destruction/
https://www.microsoft.com/en-us/security/blog/2023/09/14/uncursing-the-ncurses-memory-corruption-vulnerabilities-found-in-library/
https://www.microsoft.com/en-us/security/blog/2023/09/14/uncursing-the-ncurses-memory-corruption-vulnerabilities-found-in-library/

12/12

The five-day job: A BlackByte ransomware intrusion case study
In a recent investigation by Microsoft Incident Response of a BlackByte 2.0
ransomware attack, we found that the threat actor progressed through the full attack
chain, from initial access to impact, in less than five days, causing significant business
disruption for the victim organization.

DEV-0196: QuaDream’s “KingsPawn” malware used to target
civil society in Europe, North America, the Middle East, and
Southeast Asia
Microsoft analyzes a threat group tracked as DEV-0196, the actor’s iOS malware
“KingsPawn”, and their link to an Israel-based private sector offensive actor (PSOA)
known as QuaDream, which reportedly sells a suite of exploits, malware, and
infrastructure called REIGN, that’s designed to exfiltrate data from mobile devices.

https://www.microsoft.com/en-us/security/blog/2023/07/06/the-five-day-job-a-blackbyte-ransomware-intrusion-case-study/
https://www.microsoft.com/en-us/security/blog/2023/07/06/the-five-day-job-a-blackbyte-ransomware-intrusion-case-study/
https://www.microsoft.com/en-us/security/blog/2023/04/11/dev-0196-quadreams-kingspawn-malware-used-to-target-civil-society-in-europe-north-america-the-middle-east-and-southeast-asia/
https://www.microsoft.com/en-us/security/blog/2023/04/11/dev-0196-quadreams-kingspawn-malware-used-to-target-civil-society-in-europe-north-america-the-middle-east-and-southeast-asia/

