
1/3

July 19, 2021

C++11 braced initialization made the impossible possible
(and how to fix it so it stays impossible)

devblogs.microsoft.com/oldnewthing/20210719-00

Raymond Chen

Suppose you have a private nested type. You might use this because you need your

constructor to be public in order to work with some framework,¹ but you don’t want people

to do their own make_ unique ; you want them to go through your factory.

class Package
{
 struct private_constructor { };

public:
 // Do not call constructor directly. Use CreatePackage instead.
 Package(int id, private_constructor);

 static Package CreatePackage(int id, int flavor)
 {
 Package package(id, private_constructor());
 ... do other stuff that gets the package ready ...
 return package;
 }
};

void bad_boy()
{
 // This doesn't work. Wrong number of parameters.
 Package package(3);

 // This doesn't work. private_constructor is a private type.
 Package package(3, Package::private_constructor());
}

But C++11 introduced braced initialization, and the bad boy can use that to construct the type

without naming it.

https://devblogs.microsoft.com/oldnewthing/20210719-00/?p=105454

2/3

void bad_boy_got_through()
{
 // Bad boy uses empty braces to sneak past the gate!
 Package package(3, {});
}

To prevent this, you need to give your private type an explicit constructor so it cannot be used

implicitly.

class Package
{
 struct private_constructor
 { explicit private_constructor() = default; };

public:
 // Do not call constructor directly. Use CreatePackage instead.
 Package(int id, private_constructor);

 ...
};

With this change, the bad boy has been foiled.

void bad_boy_foiled()
{
 // Can't sneak in with empty braces.
 Package package(3, {});
}

From Visual C++:

error C2664: 'Package::Package(Package &&)': cannot convert argument 2 from
'initializer list' to 'Package::private_constructor'

From clang:

error: converting to 'Package::private_constructor' from initializer list would use
explicit constructor 'constexpr Package::private_constructor::private_constructor()'

And the explicit constructor is inaccessible.

void bad_boy_foiled()
{
 // Can't use explicit constructor.
 Package package(3, Package::private_constructor{});
}

// error: cannot access private struct

¹ For example, std:: make_ unique requires that the object have a public constructor.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

